from numpy.testing import TestCase, run_module_suite from numpy.testing import assert_equal, assert_almost_equal # WARNING: numpy also has an fft object from _aubio import cvec, specdesc from numpy import array, shape, arange, zeros, log from math import pi class aubio_specdesc(TestCase): def test_members(self): o = specdesc() assert_equal ([o.buf_size, o.channels, o.method], [1024, 1, "default"]) o = specdesc("complex", 512, 2) assert_equal ([o.buf_size, o.channels, o.method], [512, 2, "complex"]) def test_hfc(self): o = specdesc("hfc") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a assert_equal (a, c.norm[0]) assert_equal ( sum(a*(a+1)), o(c)) def test_complex(self): o = specdesc("complex") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a assert_equal (a, c.norm[0]) # the previous run was on zeros, so previous frames are still 0 # so we have sqrt ( abs ( r2 ^ 2) ) == r2 assert_equal ( sum(a), o(c)) # second time. c.norm = a, so, r1 = r2, and the euclidian distance is 0 assert_equal ( 0, o(c)) def test_phase(self): o = specdesc("phase") c = cvec() assert_equal( 0., o(c)) def test_kl(self): o = specdesc("kl") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a assert_almost_equal( sum(a * log(1.+ a/1.e-10 ) ) / o(c), 1., decimal=6) def test_mkl(self): o = specdesc("mkl") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a assert_almost_equal( sum(log(1.+ a/1.e-10 ) ) / o(c), 1, decimal=6) def test_specflux(self): o = specdesc("specflux") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a assert_equal( sum(a), o(c)) assert_equal( 0, o(c)) c.norm = zeros(c.length, dtype='float32') assert_equal( 0, o(c)) def test_centroid(self): o = specdesc("centroid") c = cvec() # make sure centroid of zeros is zero assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a centroid = sum(a*a) / sum(a) assert_almost_equal (centroid, o(c), decimal = 2) c.norm = a * .5 assert_almost_equal (centroid, o(c), decimal = 2) def test_spread(self): o = specdesc("spread") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a centroid = sum(a*a) / sum(a) spread = sum( (a - centroid)**2 *a) / sum(a) assert_almost_equal (spread, o(c), decimal = 2) c.norm = a * 3 assert_almost_equal (spread, o(c), decimal = 2) def test_skewness(self): o = specdesc("skewness") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a centroid = sum(a*a) / sum(a) spread = sum( (a - centroid)**2 *a) / sum(a) skewness = sum( (a - centroid)**3 *a) / sum(a) / spread **1.5 assert_almost_equal (skewness, o(c), decimal = 2) c.norm = a * 3 assert_almost_equal (skewness, o(c), decimal = 2) def test_kurtosis(self): o = specdesc("kurtosis") c = cvec() assert_equal( 0., o(c)) a = arange(c.length, dtype='float32') c.norm = a centroid = sum(a*a) / sum(a) spread = sum( (a - centroid)**2 *a) / sum(a) kurtosis = sum( (a - centroid)**4 *a) / sum(a) / spread **2 assert_almost_equal (kurtosis, o(c), decimal = 2) def test_slope(self): o = specdesc("slope") c = cvec() assert_equal( 0., o(c)) a = arange(c.length * 2, 0, -2, dtype='float32') k = arange(c.length, dtype='float32') c.norm = a num = len(a) * sum(k*a) - sum(k)*sum(a) den = (len(a) * sum(k**2) - sum(k)**2) slope = num/den/sum(a) assert_almost_equal (slope, o(c), decimal = 5) a = arange(0, c.length * 2, +2, dtype='float32') c.norm = a num = len(a) * sum(k*a) - sum(k)*sum(a) den = (len(a) * sum(k**2) - sum(k)**2) slope = num/den/sum(a) assert_almost_equal (slope, o(c), decimal = 5) a = arange(0, c.length * 2, +2, dtype='float32') c.norm = a * 2 assert_almost_equal (slope, o(c), decimal = 5) def test_decrease(self): o = specdesc("decrease") c = cvec() assert_equal( 0., o(c)) a = arange(c.length * 2, 0, -2, dtype='float32') k = arange(c.length, dtype='float32') c.norm = a decrease = sum((a[1:] - a [0]) / k[1:]) / sum(a[1:]) assert_almost_equal (decrease, o(c), decimal = 5) a = arange(0, c.length * 2, +2, dtype='float32') c.norm = a decrease = sum((a[1:] - a [0]) / k[1:]) / sum(a[1:]) assert_almost_equal (decrease, o(c), decimal = 5) a = arange(0, c.length * 2, +2, dtype='float32') c.norm = a * 2 decrease = sum((a[1:] - a [0]) / k[1:]) / sum(a[1:]) assert_almost_equal (decrease, o(c), decimal = 5) def test_rolloff(self): o = specdesc("rolloff") c = cvec() assert_equal( 0., o(c)) a = arange(c.length * 2, 0, -2, dtype='float32') k = arange(c.length, dtype='float32') c.norm = a cumsum = .95*sum(a*a) i = 0; rollsum = 0 while rollsum < cumsum: rollsum += a[i]*a[i] i+=1 rolloff = i assert_equal (rolloff, o(c)) if __name__ == '__main__': from unittest import main main()