[96fb8ad] | 1 | """Copyright (C) 2004 Paul Brossier <piem@altern.org> |
---|
| 2 | print aubio.__LICENSE__ for the terms of use |
---|
| 3 | """ |
---|
| 4 | |
---|
| 5 | __LICENSE__ = """\ |
---|
| 6 | Copyright (C) 2004 Paul Brossier <piem@altern.org> |
---|
| 7 | |
---|
| 8 | This program is free software; you can redistribute it and/or modify |
---|
| 9 | it under the terms of the GNU General Public License as published by |
---|
| 10 | the Free Software Foundation; either version 2 of the License, or |
---|
| 11 | (at your option) any later version. |
---|
| 12 | |
---|
| 13 | This program is distributed in the hope that it will be useful, |
---|
| 14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 16 | GNU General Public License for more details. |
---|
| 17 | |
---|
| 18 | You should have received a copy of the GNU General Public License |
---|
| 19 | along with this program; if not, write to the Free Software |
---|
| 20 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
| 21 | """ |
---|
| 22 | |
---|
| 23 | """ this file contains routines to compare two lists of onsets or notes. |
---|
| 24 | it somewhat implements the Receiver Operating Statistic (ROC). |
---|
| 25 | see http://en.wikipedia.org/wiki/Receiver_operating_characteristic |
---|
| 26 | """ |
---|
| 27 | |
---|
| 28 | from numarray import * |
---|
| 29 | |
---|
| 30 | def onset_roc(la, lb, eps): |
---|
| 31 | """ thanks to nicolas wack for the rewrite""" |
---|
| 32 | """ compute differences between two lists """ |
---|
| 33 | """ feature: scalable to huge lists """ |
---|
| 34 | n, m = len(la), len(lb) |
---|
| 35 | if m == 0 : |
---|
| 36 | return 0,0,0,n,0 |
---|
| 37 | missed, bad = 0, 0 |
---|
| 38 | # find missed ones first |
---|
| 39 | for x in la: |
---|
| 40 | correspond = 0 |
---|
| 41 | for y in lb: |
---|
| 42 | if abs(x-y) <= eps: |
---|
| 43 | correspond += 1 |
---|
| 44 | if correspond == 0: |
---|
| 45 | missed += 1 |
---|
| 46 | # then look for bad ones |
---|
| 47 | for y in lb: |
---|
| 48 | correspond = 0 |
---|
| 49 | for x in la: |
---|
| 50 | if abs(x-y) <= eps: |
---|
| 51 | correspond += 1 |
---|
| 52 | if correspond == 0: |
---|
| 53 | bad += 1 |
---|
| 54 | ok = n - missed |
---|
| 55 | hits = m - bad |
---|
[7445aea] | 56 | # at this point, we must have ok = hits. if not we had |
---|
| 57 | # - a case were one onset counted for two labels (ok>hits) |
---|
| 58 | # - a case were one labels matched two onsets (hits>ok) |
---|
| 59 | # bad hack for now (fails if both above cases have happened): |
---|
| 60 | if ok > hits: bad += ok-hits; ok = hits |
---|
| 61 | if hits > ok: missed += hits-ok; hits = ok |
---|
[96fb8ad] | 62 | total = n |
---|
| 63 | return ok,bad,missed,total,hits |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | def notes_roc (la, lb, eps): |
---|
| 67 | """ creates a matrix of size len(la)*len(lb) then look for hit and miss |
---|
| 68 | in it within eps tolerance windows """ |
---|
| 69 | gdn,fpw,fpg,fpa,fdo,fdp = 0,0,0,0,0,0 |
---|
| 70 | m = len(la) |
---|
| 71 | n = len(lb) |
---|
| 72 | x = resize(la[:,0],(n,m)) |
---|
| 73 | y = transpose(resize(lb[:,0],(m,n))) |
---|
| 74 | teps = (abs(x-y) <= eps[0]) |
---|
| 75 | x = resize(la[:,1],(n,m)) |
---|
| 76 | y = transpose(resize(lb[:,1],(m,n))) |
---|
| 77 | tpitc = (abs(x-y) <= eps[1]) |
---|
| 78 | res = teps * tpitc |
---|
| 79 | res = add.reduce(res,axis=0) |
---|
| 80 | for i in range(len(res)) : |
---|
| 81 | if res[i] > 1: |
---|
| 82 | gdn+=1 |
---|
| 83 | fdo+=res[i]-1 |
---|
| 84 | elif res [i] == 1: |
---|
| 85 | gdn+=1 |
---|
| 86 | fpa = n - gdn - fpa |
---|
| 87 | return gdn,fpw,fpg,fpa,fdo,fdp |
---|
| 88 | |
---|
| 89 | def load_onsets(filename) : |
---|
| 90 | """ load onsets targets / candidates files in arrays """ |
---|
| 91 | l = []; |
---|
| 92 | |
---|
| 93 | f = open(filename,'ro') |
---|
| 94 | while 1: |
---|
| 95 | line = f.readline().split() |
---|
| 96 | if not line : break |
---|
| 97 | l.append(float(line[0])) |
---|
| 98 | |
---|
| 99 | return l |
---|
| 100 | |
---|
| 101 | """ |
---|
| 102 | def onset_roc (la, lb, eps): |
---|
| 103 | \"\"\" build a matrix of all possible differences between two lists \"\"\" |
---|
| 104 | \"\"\" bug: not scalable to huge lists \"\"\" |
---|
| 105 | n, m = len(la), len(lb) |
---|
| 106 | if m ==0 : |
---|
| 107 | return 0,0,0,n,0 |
---|
| 108 | missed, bad = 0, 0 |
---|
| 109 | x = resize(la[:],(m,n)) |
---|
| 110 | y = transpose(resize(lb[:],(n,m))) |
---|
| 111 | teps = (abs(x-y) <= eps) |
---|
| 112 | resmis = add.reduce(teps,axis = 0) |
---|
| 113 | for i in range(n) : |
---|
| 114 | if resmis[i] == 0: |
---|
| 115 | missed += 1 |
---|
| 116 | resbad = add.reduce(teps,axis=1) |
---|
| 117 | for i in range(m) : |
---|
| 118 | if resbad[i] == 0: |
---|
| 119 | bad += 1 |
---|
| 120 | ok = n - missed |
---|
| 121 | hits = m - bad |
---|
| 122 | total = n |
---|
| 123 | return ok,bad,missed,total,hits |
---|
| 124 | """ |
---|
| 125 | |
---|