from aubioclass import * def get_onset_mode(nvalue): """ utility function to convert a string to aubio_onsetdetection_type """ if nvalue == 'complexdomain' or nvalue == 'complex' : return aubio_onset_complex elif nvalue == 'hfc' : return aubio_onset_hfc elif nvalue == 'phase' : return aubio_onset_phase elif nvalue == 'specdiff' : return aubio_onset_specdiff elif nvalue == 'energy' : return aubio_onset_energy elif nvalue == 'kl' : return aubio_onset_kl elif nvalue == 'mkl' : return aubio_onset_mkl elif nvalue == 'dual' : return 'dual' else: import sys print "unknown onset detection function selected" sys.exit(1) def get_pitch_mode(nvalue): """ utility function to convert a string to aubio_pitchdetection_type """ if nvalue == 'mcomb' : return aubio_pitch_mcomb elif nvalue == 'yin' : return aubio_pitch_yin elif nvalue == 'fcomb' : return aubio_pitch_fcomb elif nvalue == 'schmitt': return aubio_pitch_schmitt else: import sys print "error: unknown pitch detection function selected" sys.exit(1) def check_onset_mode(option, opt, value, parser): """ wrapper function to convert a list of modes to aubio_onsetdetection_type """ nvalues = parser.rargs[0].split(',') val = [] for nvalue in nvalues: val.append(get_onset_mode(nvalue)) setattr(parser.values, option.dest, val) def check_pitch_mode(option, opt, value, parser): """ utility function to convert a string to aubio_pitchdetection_type""" nvalues = parser.rargs[0].split(',') val = [] for nvalue in nvalues: val.append(get_pitch_mode(nvalue)) setattr(parser.values, option.dest, val) def check_pitchm_mode(option, opt, value, parser): """ utility function to convert a string to aubio_pitchdetection_mode """ nvalue = parser.rargs[0] if nvalue == 'freq' : setattr(parser.values, option.dest, aubio_pitchm_freq) elif nvalue == 'midi' : setattr(parser.values, option.dest, aubio_pitchm_midi) elif nvalue == 'cent' : setattr(parser.values, option.dest, aubio_pitchm_cent) elif nvalue == 'bin' : setattr(parser.values, option.dest, aubio_pitchm_bin) else: import sys print "error: unknown pitch detection output selected" sys.exit(1) #def getonsets(filein,threshold=0.2,silence=-70.,bufsize=1024,hopsize=512, # mode='dual',localmin=False,storefunc=False,derivate=False): # frameread = 0 # filei = sndfile(filein) # channels = filei.channels() # myvec = fvec(hopsize,channels) # readsize = filei.read(hopsize,myvec) # opick = onsetpick(bufsize,hopsize,channels,myvec,threshold, # mode=mode,derivate=derivate) # mylist = list() # if localmin: # ovalist = [0., 0., 0., 0., 0.] # ofunclist = [] # while(readsize): # readsize = filei.read(hopsize,myvec) # isonset,val = opick.do(myvec) # if (aubio_silence_detection(myvec(),silence)): # isonset=0 # if localmin: # if val > 0: ovalist.append(val) # else: ovalist.append(0) # ovalist.pop(0) # if storefunc: # ofunclist.append(val) # if (isonset == 1): # if localmin: # i=len(ovalist)-1 # # find local minima before peak # while ovalist[i-1] < ovalist[i] and i > 0: # i -= 1 # now = (frameread+1-i) # else: # now = frameread # if now > 0 : # mylist.append(now) # else: # now = 0 # mylist.append(now) # frameread += 1 # return mylist, ofunclist # #def cutfile(filein,slicetimes,zerothres=0.008,bufsize=1024,hopsize=512): # frameread = 0 # readsize = hopsize # filei = sndfile(filein) # framestep = hopsize/(filei.samplerate()+0.) # channels = filei.channels() # newname = "%s%s%09.5f%s%s" % (filein.split(".")[0].split("/")[-1],".", # frameread*framestep,".",filein.split(".")[-1]) # fileo = sndfile(newname,model=filei) # myvec = fvec(hopsize,channels) # mycopy = fvec(hopsize,channels) # while(readsize==hopsize): # readsize = filei.read(hopsize,myvec) # # write to current file # if len(slicetimes) and frameread >= slicetimes[0]: # slicetimes.pop(0) # # write up to 1st zero crossing # zerocross = 0 # while ( abs( myvec.get(zerocross,0) ) > zerothres ): # zerocross += 1 # writesize = fileo.write(zerocross,myvec) # fromcross = 0 # while (zerocross < readsize): # for i in range(channels): # mycopy.set(myvec.get(zerocross,i),fromcross,i) # fromcross += 1 # zerocross += 1 # del fileo # fileo = sndfile("%s%s%09.5f%s%s" % # (filein.split(".")[0].split("/")[-1],".", # frameread*framestep,".",filein.split(".")[-1]),model=filei) # writesize = fileo.write(fromcross,mycopy) # else: # writesize = fileo.write(readsize,myvec) # frameread += 1 # del fileo # # #def getsilences(filein,hopsize=512,silence=-70): # frameread = 0 # filei = sndfile(filein) # srate = filei.samplerate() # channels = filei.channels() # myvec = fvec(hopsize,channels) # readsize = filei.read(hopsize,myvec) # mylist = [] # wassilence = 0 # while(readsize==hopsize): # readsize = filei.read(hopsize,myvec) # if (aubio_silence_detection(myvec(),silence)==1): # if wassilence == 0: # mylist.append(frameread) # wassilence == 1 # else: wassilence = 0 # frameread += 1 # return mylist # # #def getpitch(filein,mode=aubio_pitch_mcomb,bufsize=1024,hopsize=512,omode=aubio_pitchm_freq, # samplerate=44100.,silence=-70): # frameread = 0 # filei = sndfile(filein) # srate = filei.samplerate() # channels = filei.channels() # myvec = fvec(hopsize,channels) # readsize = filei.read(hopsize,myvec) # pitchdet = pitchdetection(mode=mode,bufsize=bufsize,hopsize=hopsize, # channels=channels,samplerate=srate,omode=omode) # mylist = [] # while(readsize==hopsize): # readsize = filei.read(hopsize,myvec) # freq = pitchdet(myvec) # #print "%.3f %.2f" % (now,freq) # if (aubio_silence_detection(myvec(),silence)!=1): # mylist.append(freq) # else: # mylist.append(-1.) # frameread += 1 # return mylist class taskparams(object): """ default parameters for task classes """ def __init__(self,input=None,output=None): self.silence = -70 self.derivate = False self.localmin = False self.delay = 0. self.storefunc = False self.bufsize = 512 self.hopsize = 256 self.samplerate = 44100 self.tol = 0.05 self.mintol = 0.0 self.step = float(self.hopsize)/float(self.samplerate) self.threshold = 0.1 self.onsetmode = 'dual' self.pitchmode = 'yin' self.omode = aubio_pitchm_freq class task(taskparams): """ default template class to apply tasks on a stream """ def __init__(self,input,output=None,params=None): """ open the input file and initialize default argument parameters should be set *before* calling this method. """ import time self.tic = time.time() if params == None: self.params = taskparams() else: self.params = params self.frameread = 0 self.readsize = self.params.hopsize self.input = input self.filei = sndfile(self.input) self.srate = self.filei.samplerate() self.channels = self.filei.channels() self.step = float(self.srate)/float(self.params.hopsize) self.myvec = fvec(self.params.hopsize,self.channels) self.output = output def __call__(self): self.readsize = self.filei.read(self.params.hopsize,self.myvec) self.frameread += 1 def compute_all(self): """ Compute data """ mylist = [] while(self.readsize==self.params.hopsize): tmp = self() if tmp: mylist.append(tmp) return mylist def eval(self,results): """ Eval data """ pass def plot(self): """ Plot data """ pass def time(self): import time print "CPU time is now %f seconds," % time.clock(), print "task execution took %f seconds" % (time.time() - self.tic) class tasksilence(task): wassilence = 1 issilence = 1 def __call__(self): task.__call__(self) if (aubio_silence_detection(self.myvec(),self.params.silence)==1): if self.wassilence == 1: self.issilence = 1 else: self.issilence = 2 self.wassilence = 1 else: if self.wassilence <= 0: self.issilence = 0 else: self.issilence = -1 self.wassilence = 0 if self.issilence == -1: return self.frameread, -1 elif self.issilence == 2: return self.frameread, 2 class taskpitch(task): def __init__(self,input,params=None): task.__init__(self,input,params=params) self.pitchdet = pitchdetection(mode=get_pitch_mode(self.params.pitchmode), bufsize=self.params.bufsize, hopsize=self.params.hopsize, channels=self.channels, samplerate=self.srate, omode=self.params.omode) def __call__(self): #print "%.3f %.2f" % (now,freq) task.__call__(self) freq = self.pitchdet(self.myvec) if (aubio_silence_detection(self.myvec(),self.params.silence)!=1): return freq else: return -1. def gettruth(self): """ big hack to extract midi note from /path/to/file..wav """ floatpit = self.input.split('.')[-2] try: return aubio_miditofreq(float(floatpit)) except ValueError: print "ERR: no truth file found" return 0 def eval(self,results): def mmean(l): return sum(l)/max(float(len(l)),1) from median import short_find self.truth = self.gettruth() res = [] for i in results: if i == -1: pass else: res.append(self.truth-i) if not res: avg = self.truth; med = self.truth else: avg = mmean(res) med = short_find(res,len(res)/2) return self.truth, self.truth-med, self.truth-avg def plot(self,pitch,outplot=None): from aubio.gnuplot import plot_pitch plot_pitch(self.input, pitch, samplerate=float(self.srate), hopsize=self.params.hopsize, outplot=outplot) class taskonset(task): def __init__(self,input,output=None,params=None): """ open the input file and initialize arguments parameters should be set *before* calling this method. """ task.__init__(self,input,params=params) self.opick = onsetpick(self.params.bufsize, self.params.hopsize, self.channels, self.myvec, self.params.threshold, mode=get_onset_mode(self.params.onsetmode), derivate=self.params.derivate) self.olist = [] self.ofunc = [] self.d,self.d2 = [],[] self.maxofunc = 0 self.last = 0 if self.params.localmin: self.ovalist = [0., 0., 0., 0., 0.] def __call__(self): task.__call__(self) isonset,val = self.opick.do(self.myvec) if (aubio_silence_detection(self.myvec(),self.params.silence)): isonset=0 if self.params.storefunc: self.ofunc.append(val) if self.params.localmin: if val > 0: self.ovalist.append(val) else: self.ovalist.append(0) self.ovalist.pop(0) if (isonset == 1): if self.params.localmin: i=len(self.ovalist)-1 # find local minima before peak while self.ovalist[i-1] < self.ovalist[i] and i > 0: i -= 1 now = (self.frameread+1-i) else: now = self.frameread if self.params.delay != 0.: now -= self.params.delay if now < 0 : now = 0 if self.params.mintol: #print now - self.last, self.params.mintol if (now - self.last) > self.params.mintol: self.last = now return now, val else: return now, val def eval(self,inputdata,ftru,mode='roc',vmode=''): from txtfile import read_datafile from onsetcompare import onset_roc, onset_diffs, onset_rocloc ltru = read_datafile(ftru,depth=0) lres = [] for i in range(len(inputdata)): lres.append(inputdata[i][0]*self.params.step) if vmode=='verbose': print "Running with mode %s" % self.params.onsetmode, print " and threshold %f" % self.params.threshold, print " on file", self.input #print ltru; print lres if mode == 'local': l = onset_diffs(ltru,lres,self.params.tol) mean = 0 for i in l: mean += i if len(l): mean = "%.3f" % (mean/len(l)) else: mean = "?0" return l, mean elif mode == 'roc': self.orig, self.missed, self.merged, \ self.expc, self.bad, self.doubled = \ onset_roc(ltru,lres,self.params.tol) elif mode == 'rocloc': self.v = {} self.v['orig'], self.v['missed'], self.v['Tm'], \ self.v['expc'], self.v['bad'], self.v['Td'], \ self.v['l'], self.v['labs'] = \ onset_rocloc(ltru,lres,self.params.tol) def plot(self,onsets,ofunc): import Gnuplot, Gnuplot.funcutils import aubio.txtfile import os.path import numarray from aubio.onsetcompare import onset_roc self.lenofunc = len(ofunc) self.maxofunc = max(max(ofunc), self.maxofunc) # onset detection function downtime = numarray.arange(len(ofunc))/self.step self.d.append(Gnuplot.Data(downtime,ofunc,with='lines')) # detected onsets x1 = numarray.array(onsets)/self.step y1 = self.maxofunc*numarray.ones(len(onsets)) self.d.append(Gnuplot.Data(x1,y1,with='impulses')) self.d2.append(Gnuplot.Data(x1,-y1,with='impulses')) # check if datafile exists truth datafile = self.input.replace('.wav','.txt') if datafile == self.input: datafile = "" if not os.path.isfile(datafile): self.title = "truth file not found" t = Gnuplot.Data(0,0,with='impulses') else: t_onsets = aubio.txtfile.read_datafile(datafile) y2 = self.maxofunc*numarray.ones(len(t_onsets)) x2 = numarray.array(t_onsets).resize(len(t_onsets)) self.d2.append(Gnuplot.Data(x2,y2,with='impulses')) tol = 0.050 orig, missed, merged, expc, bad, doubled = \ onset_roc(x2,x1,tol) self.title = "GD %2.3f%% FP %2.3f%%" % \ ((100*float(orig-missed-merged)/(orig)), (100*float(bad+doubled)/(orig))) def plotplot(self,outplot=None): from aubio.gnuplot import gnuplot_init, audio_to_array, make_audio_plot import re # audio data time,data = audio_to_array(self.input) self.d2.append(make_audio_plot(time,data)) # prepare the plot g = gnuplot_init(outplot) g('set title \'%s %s\'' % (re.sub('.*/','',self.input),self.title)) g('set multiplot') # hack to align left axis g('set lmargin 15') # plot waveform and onsets g('set size 1,0.3') g('set origin 0,0.7') g('set xrange [0:%f]' % max(time)) g('set yrange [-1:1]') g.ylabel('amplitude') g.plot(*self.d2) g('unset title') # plot onset detection function g('set size 1,0.7') g('set origin 0,0') g('set xrange [0:%f]' % (self.lenofunc/self.step)) g('set yrange [0:%f]' % (self.maxofunc*1.01)) g.xlabel('time') g.ylabel('onset detection value') g.plot(*self.d) g('unset multiplot') class taskcut(task): def __init__(self,input,slicetimes,params=None,output=None): """ open the input file and initialize arguments parameters should be set *before* calling this method. """ task.__init__(self,input,output=None,params=params) self.newname = "%s%s%09.5f%s%s" % (self.input.split(".")[0].split("/")[-1],".", self.frameread/self.step,".",self.input.split(".")[-1]) self.fileo = sndfile(self.newname,model=self.filei) self.myvec = fvec(self.params.hopsize,self.channels) self.mycopy = fvec(self.params.hopsize,self.channels) self.slicetimes = slicetimes def __call__(self): task.__call__(self) # write to current file if len(self.slicetimes) and self.frameread >= self.slicetimes[0]: self.slicetimes.pop(0) # write up to 1st zero crossing zerocross = 0 while ( abs( self.myvec.get(zerocross,0) ) > self.params.zerothres ): zerocross += 1 writesize = self.fileo.write(zerocross,self.myvec) fromcross = 0 while (zerocross < self.readsize): for i in range(self.channels): self.mycopy.set(self.myvec.get(zerocross,i),fromcross,i) fromcross += 1 zerocross += 1 del self.fileo self.fileo = sndfile("%s%s%09.5f%s%s" % (self.input.split(".")[0].split("/")[-1],".", self.frameread/self.step,".",self.input.split(".")[-1]),model=self.filei) writesize = self.fileo.write(fromcross,self.mycopy) else: writesize = self.fileo.write(self.readsize,self.myvec) class taskbeat(taskonset): def __init__(self,input,params=None,output=None): """ open the input file and initialize arguments parameters should be set *before* calling this method. """ taskonset.__init__(self,input,output=None,params=params) self.btwinlen = 512**2/self.params.hopsize self.btstep = self.btwinlen/4 self.btoutput = fvec(self.btstep,self.channels) self.dfframe = fvec(self.btwinlen,self.channels) self.bt = beattracking(self.btwinlen,self.channels) self.pos2 = 0 def __call__(self): taskonset.__call__(self) # write to current file if self.pos2 == self.btstep - 1 : self.bt.do(self.dfframe,self.btoutput) for i in range (self.btwinlen - self.btstep): self.dfframe.set(self.dfframe.get(i+self.btstep,0),i,0) for i in range(self.btwinlen - self.btstep, self.btwinlen): self.dfframe.set(0,i,0) self.pos2 = -1; self.pos2 += 1 val = self.opick.pp.getval() self.dfframe.set(val,self.btwinlen - self.btstep + self.pos2,0) i=0 for i in range(1,int( self.btoutput.get(0,0) ) ): if self.pos2 == self.btoutput.get(i,0) and \ aubio_silence_detection(self.myvec(), self.params.silence)!=1: return self.frameread, 0 def eval(self,results): pass