1 | from aubioclass import * |
---|
2 | |
---|
3 | def get_onset_mode(nvalue): |
---|
4 | """ utility function to convert a string to aubio_onsetdetection_type """ |
---|
5 | if nvalue == 'complexdomain' or nvalue == 'complex' : |
---|
6 | return aubio_onset_complex |
---|
7 | elif nvalue == 'hfc' : |
---|
8 | return aubio_onset_hfc |
---|
9 | elif nvalue == 'phase' : |
---|
10 | return aubio_onset_phase |
---|
11 | elif nvalue == 'specdiff' : |
---|
12 | return aubio_onset_specdiff |
---|
13 | elif nvalue == 'energy' : |
---|
14 | return aubio_onset_energy |
---|
15 | elif nvalue == 'kl' : |
---|
16 | return aubio_onset_kl |
---|
17 | elif nvalue == 'mkl' : |
---|
18 | return aubio_onset_mkl |
---|
19 | elif nvalue == 'dual' : |
---|
20 | return 'dual' |
---|
21 | else: |
---|
22 | import sys |
---|
23 | print "unknown onset detection function selected" |
---|
24 | sys.exit(1) |
---|
25 | |
---|
26 | def get_pitch_mode(nvalue): |
---|
27 | """ utility function to convert a string to aubio_pitchdetection_type """ |
---|
28 | if nvalue == 'mcomb' : |
---|
29 | return aubio_pitch_mcomb |
---|
30 | elif nvalue == 'yin' : |
---|
31 | return aubio_pitch_yin |
---|
32 | elif nvalue == 'fcomb' : |
---|
33 | return aubio_pitch_fcomb |
---|
34 | elif nvalue == 'schmitt': |
---|
35 | return aubio_pitch_schmitt |
---|
36 | else: |
---|
37 | import sys |
---|
38 | print "error: unknown pitch detection function selected" |
---|
39 | sys.exit(1) |
---|
40 | |
---|
41 | def check_onset_mode(option, opt, value, parser): |
---|
42 | """ wrapper function to convert a list of modes to |
---|
43 | aubio_onsetdetection_type """ |
---|
44 | nvalues = parser.rargs[0].split(',') |
---|
45 | val = [] |
---|
46 | for nvalue in nvalues: |
---|
47 | val.append(get_onset_mode(nvalue)) |
---|
48 | setattr(parser.values, option.dest, val) |
---|
49 | |
---|
50 | def check_pitch_mode(option, opt, value, parser): |
---|
51 | """ utility function to convert a string to aubio_pitchdetection_type""" |
---|
52 | nvalues = parser.rargs[0].split(',') |
---|
53 | val = [] |
---|
54 | for nvalue in nvalues: |
---|
55 | val.append(get_pitch_mode(nvalue)) |
---|
56 | setattr(parser.values, option.dest, val) |
---|
57 | |
---|
58 | def check_pitchm_mode(option, opt, value, parser): |
---|
59 | """ utility function to convert a string to aubio_pitchdetection_mode """ |
---|
60 | nvalue = parser.rargs[0] |
---|
61 | if nvalue == 'freq' : |
---|
62 | setattr(parser.values, option.dest, aubio_pitchm_freq) |
---|
63 | elif nvalue == 'midi' : |
---|
64 | setattr(parser.values, option.dest, aubio_pitchm_midi) |
---|
65 | elif nvalue == 'cent' : |
---|
66 | setattr(parser.values, option.dest, aubio_pitchm_cent) |
---|
67 | elif nvalue == 'bin' : |
---|
68 | setattr(parser.values, option.dest, aubio_pitchm_bin) |
---|
69 | else: |
---|
70 | import sys |
---|
71 | print "error: unknown pitch detection output selected" |
---|
72 | sys.exit(1) |
---|
73 | |
---|
74 | class taskparams(object): |
---|
75 | """ default parameters for task classes """ |
---|
76 | def __init__(self,input=None,output=None): |
---|
77 | self.silence = -70 |
---|
78 | self.derivate = False |
---|
79 | self.localmin = False |
---|
80 | self.delay = 4. |
---|
81 | self.storefunc = False |
---|
82 | self.bufsize = 512 |
---|
83 | self.hopsize = 256 |
---|
84 | self.samplerate = 44100 |
---|
85 | self.tol = 0.05 |
---|
86 | self.mintol = 0.0 |
---|
87 | self.step = float(self.hopsize)/float(self.samplerate) |
---|
88 | self.threshold = 0.1 |
---|
89 | self.onsetmode = 'dual' |
---|
90 | self.pitchmode = 'yin' |
---|
91 | self.pitchsmooth = 20 |
---|
92 | self.pitchmin=100. |
---|
93 | self.pitchmax=1500. |
---|
94 | self.dcthreshold = -1. |
---|
95 | self.omode = aubio_pitchm_freq |
---|
96 | self.verbose = False |
---|
97 | |
---|
98 | class task(taskparams): |
---|
99 | """ default template class to apply tasks on a stream """ |
---|
100 | def __init__(self,input,output=None,params=None): |
---|
101 | """ open the input file and initialize default argument |
---|
102 | parameters should be set *before* calling this method. |
---|
103 | """ |
---|
104 | import time |
---|
105 | self.tic = time.time() |
---|
106 | if params == None: self.params = taskparams() |
---|
107 | else: self.params = params |
---|
108 | self.frameread = 0 |
---|
109 | self.readsize = self.params.hopsize |
---|
110 | self.input = input |
---|
111 | self.filei = sndfile(self.input) |
---|
112 | self.srate = self.filei.samplerate() |
---|
113 | self.channels = self.filei.channels() |
---|
114 | self.params.step = float(self.params.hopsize)/float(self.srate) |
---|
115 | self.myvec = fvec(self.params.hopsize,self.channels) |
---|
116 | self.output = output |
---|
117 | |
---|
118 | def __call__(self): |
---|
119 | self.readsize = self.filei.read(self.params.hopsize,self.myvec) |
---|
120 | self.frameread += 1 |
---|
121 | |
---|
122 | def compute_all(self): |
---|
123 | """ Compute data """ |
---|
124 | mylist = [] |
---|
125 | while(self.readsize==self.params.hopsize): |
---|
126 | tmp = self() |
---|
127 | if tmp: |
---|
128 | mylist.append(tmp) |
---|
129 | if self.params.verbose: |
---|
130 | self.fprint(tmp) |
---|
131 | return mylist |
---|
132 | |
---|
133 | def fprint(self,foo): |
---|
134 | print foo |
---|
135 | |
---|
136 | def eval(self,results): |
---|
137 | """ Eval data """ |
---|
138 | pass |
---|
139 | |
---|
140 | def plot(self): |
---|
141 | """ Plot data """ |
---|
142 | pass |
---|
143 | |
---|
144 | def time(self): |
---|
145 | import time |
---|
146 | print "CPU time is now %f seconds," % time.clock(), |
---|
147 | print "task execution took %f seconds" % (time.time() - self.tic) |
---|
148 | |
---|
149 | class tasksilence(task): |
---|
150 | wassilence = 1 |
---|
151 | issilence = 1 |
---|
152 | def __call__(self): |
---|
153 | task.__call__(self) |
---|
154 | if (aubio_silence_detection(self.myvec(),self.params.silence)==1): |
---|
155 | if self.wassilence == 1: self.issilence = 1 |
---|
156 | else: self.issilence = 2 |
---|
157 | self.wassilence = 1 |
---|
158 | else: |
---|
159 | if self.wassilence <= 0: self.issilence = 0 |
---|
160 | else: self.issilence = -1 |
---|
161 | self.wassilence = 0 |
---|
162 | if self.issilence == -1: |
---|
163 | return max(self.frameread-self.params.delay,0.), -1 |
---|
164 | elif self.issilence == 2: |
---|
165 | return max(self.frameread+self.params.delay,0.), 2 |
---|
166 | |
---|
167 | def fprint(self,foo): |
---|
168 | print self.params.step*foo[0], |
---|
169 | if foo[1] == 2: print "OFF" |
---|
170 | else: print "ON" |
---|
171 | |
---|
172 | class taskpitch(task): |
---|
173 | def __init__(self,input,params=None): |
---|
174 | task.__init__(self,input,params=params) |
---|
175 | self.shortlist = [0. for i in range(self.params.pitchsmooth)] |
---|
176 | self.pitchdet = pitchdetection(mode=get_pitch_mode(self.params.pitchmode), |
---|
177 | bufsize=self.params.bufsize, |
---|
178 | hopsize=self.params.hopsize, |
---|
179 | channels=self.channels, |
---|
180 | samplerate=self.srate, |
---|
181 | omode=self.params.omode) |
---|
182 | |
---|
183 | def __call__(self): |
---|
184 | from median import short_find |
---|
185 | task.__call__(self) |
---|
186 | if (aubio_silence_detection(self.myvec(),self.params.silence)==1): |
---|
187 | freq = -1. |
---|
188 | else: |
---|
189 | freq = self.pitchdet(self.myvec) |
---|
190 | minpitch = self.params.pitchmin |
---|
191 | maxpitch = self.params.pitchmax |
---|
192 | if maxpitch and freq > maxpitch : |
---|
193 | freq = -1. |
---|
194 | elif minpitch and freq < minpitch : |
---|
195 | freq = -1. |
---|
196 | if self.params.pitchsmooth: |
---|
197 | self.shortlist.append(freq) |
---|
198 | self.shortlist.pop(0) |
---|
199 | smoothfreq = short_find(self.shortlist, |
---|
200 | len(self.shortlist)/2) |
---|
201 | return smoothfreq |
---|
202 | else: |
---|
203 | return freq |
---|
204 | |
---|
205 | def compute_all(self): |
---|
206 | """ Compute data """ |
---|
207 | mylist = [] |
---|
208 | while(self.readsize==self.params.hopsize): |
---|
209 | freq = self() |
---|
210 | mylist.append(freq) |
---|
211 | if self.params.verbose: |
---|
212 | self.fprint("%s\t%s" % (self.frameread*self.params.step,freq)) |
---|
213 | return mylist |
---|
214 | |
---|
215 | def gettruth(self): |
---|
216 | """ big hack to extract midi note from /path/to/file.<midinote>.wav """ |
---|
217 | floatpit = self.input.split('.')[-2] |
---|
218 | try: |
---|
219 | return aubio_miditofreq(float(floatpit)) |
---|
220 | except ValueError: |
---|
221 | print "ERR: no truth file found" |
---|
222 | return 0 |
---|
223 | |
---|
224 | def eval(self,results): |
---|
225 | def mmean(l): |
---|
226 | return sum(l)/max(float(len(l)),1) |
---|
227 | |
---|
228 | from median import percental |
---|
229 | self.truth = self.gettruth() |
---|
230 | res = [] |
---|
231 | for i in results: |
---|
232 | if i <= 0: pass |
---|
233 | else: res.append(self.truth-i) |
---|
234 | if not res: |
---|
235 | avg = self.truth; med = self.truth |
---|
236 | else: |
---|
237 | avg = mmean(res) |
---|
238 | med = percental(res,len(res)/2) |
---|
239 | return self.truth, self.truth-med, self.truth-avg |
---|
240 | |
---|
241 | def plot(self,pitch,wplot,oplots,outplot=None): |
---|
242 | from aubio.txtfile import read_datafile |
---|
243 | import os.path |
---|
244 | import numarray |
---|
245 | import Gnuplot |
---|
246 | |
---|
247 | downtime = self.params.step*numarray.arange(len(pitch)) |
---|
248 | oplots.append(Gnuplot.Data(downtime,pitch,with='lines', |
---|
249 | title=self.params.pitchmode)) |
---|
250 | |
---|
251 | # check if ground truth exists |
---|
252 | datafile = self.input.replace('.wav','.txt') |
---|
253 | if datafile == self.input: datafile = "" |
---|
254 | if not os.path.isfile(datafile): |
---|
255 | self.title = "" #"truth file not found" |
---|
256 | t = Gnuplot.Data(0,0,with='impulses') |
---|
257 | else: |
---|
258 | self.title = "" #"truth file plotting not implemented yet" |
---|
259 | values = read_datafile(datafile) |
---|
260 | if (len(datafile[0])) > 1: |
---|
261 | time, pitch = [], [] |
---|
262 | for i in range(len(values)): |
---|
263 | time.append(values[i][0]) |
---|
264 | pitch.append(values[i][1]) |
---|
265 | oplots.append(Gnuplot.Data(time,pitch,with='lines', |
---|
266 | title='ground truth')) |
---|
267 | |
---|
268 | def plotplot(self,wplot,oplots,outplot=None): |
---|
269 | from aubio.gnuplot import gnuplot_init, audio_to_array, make_audio_plot |
---|
270 | import re |
---|
271 | # audio data |
---|
272 | time,data = audio_to_array(self.input) |
---|
273 | f = make_audio_plot(time,data) |
---|
274 | |
---|
275 | g = gnuplot_init(outplot) |
---|
276 | g('set title \'%s %s\'' % (re.sub('.*/','',self.input),self.title)) |
---|
277 | g('set multiplot') |
---|
278 | # hack to align left axis |
---|
279 | g('set lmargin 15') |
---|
280 | # plot waveform and onsets |
---|
281 | g('set size 1,0.3') |
---|
282 | g('set origin 0,0.7') |
---|
283 | g('set xrange [0:%f]' % max(time)) |
---|
284 | g('set yrange [-1:1]') |
---|
285 | g.ylabel('amplitude') |
---|
286 | g.plot(f) |
---|
287 | g('unset title') |
---|
288 | # plot onset detection function |
---|
289 | |
---|
290 | |
---|
291 | g('set size 1,0.7') |
---|
292 | g('set origin 0,0') |
---|
293 | g('set xrange [0:%f]' % max(time)) |
---|
294 | g('set yrange [40:%f]' % self.params.pitchmax) |
---|
295 | g('set key right top') |
---|
296 | g('set noclip one') |
---|
297 | g('set format x ""') |
---|
298 | #g.xlabel('time (s)') |
---|
299 | g.ylabel('frequency (Hz)') |
---|
300 | multiplot = 1 |
---|
301 | if multiplot: |
---|
302 | for i in range(len(oplots)): |
---|
303 | # plot onset detection functions |
---|
304 | g('set size 1,%f' % (0.7/(len(oplots)))) |
---|
305 | g('set origin 0,%f' % (float(i)*0.7/(len(oplots)))) |
---|
306 | g('set xrange [0:%f]' % max(time)) |
---|
307 | g.plot(oplots[i]) |
---|
308 | else: |
---|
309 | g.plot(*oplots) |
---|
310 | g('unset multiplot') |
---|
311 | |
---|
312 | |
---|
313 | class taskonset(task): |
---|
314 | def __init__(self,input,output=None,params=None): |
---|
315 | """ open the input file and initialize arguments |
---|
316 | parameters should be set *before* calling this method. |
---|
317 | """ |
---|
318 | task.__init__(self,input,params=params) |
---|
319 | self.opick = onsetpick(self.params.bufsize, |
---|
320 | self.params.hopsize, |
---|
321 | self.channels, |
---|
322 | self.myvec, |
---|
323 | self.params.threshold, |
---|
324 | mode=get_onset_mode(self.params.onsetmode), |
---|
325 | dcthreshold=self.params.dcthreshold, |
---|
326 | derivate=self.params.derivate) |
---|
327 | self.olist = [] |
---|
328 | self.ofunc = [] |
---|
329 | self.maxofunc = 0 |
---|
330 | self.last = 0 |
---|
331 | if self.params.localmin: |
---|
332 | self.ovalist = [0., 0., 0., 0., 0.] |
---|
333 | |
---|
334 | def __call__(self): |
---|
335 | task.__call__(self) |
---|
336 | isonset,val = self.opick.do(self.myvec) |
---|
337 | if (aubio_silence_detection(self.myvec(),self.params.silence)): |
---|
338 | isonset=0 |
---|
339 | if self.params.storefunc: |
---|
340 | self.ofunc.append(val) |
---|
341 | if self.params.localmin: |
---|
342 | if val > 0: self.ovalist.append(val) |
---|
343 | else: self.ovalist.append(0) |
---|
344 | self.ovalist.pop(0) |
---|
345 | if (isonset == 1): |
---|
346 | if self.params.localmin: |
---|
347 | # find local minima before peak |
---|
348 | i=len(self.ovalist)-1 |
---|
349 | while self.ovalist[i-1] < self.ovalist[i] and i > 0: |
---|
350 | i -= 1 |
---|
351 | now = (self.frameread+1-i) |
---|
352 | else: |
---|
353 | now = self.frameread |
---|
354 | # take back delay |
---|
355 | if self.params.delay != 0.: now -= self.params.delay |
---|
356 | if now < 0 : |
---|
357 | now = 0 |
---|
358 | if self.params.mintol: |
---|
359 | # prune doubled |
---|
360 | if (now - self.last) > self.params.mintol: |
---|
361 | self.last = now |
---|
362 | return now, val |
---|
363 | else: |
---|
364 | return now, val |
---|
365 | |
---|
366 | |
---|
367 | def fprint(self,foo): |
---|
368 | print self.params.step*foo[0] |
---|
369 | |
---|
370 | def eval(self,inputdata,ftru,mode='roc',vmode=''): |
---|
371 | from txtfile import read_datafile |
---|
372 | from onsetcompare import onset_roc, onset_diffs, onset_rocloc |
---|
373 | ltru = read_datafile(ftru,depth=0) |
---|
374 | lres = [] |
---|
375 | for i in range(len(inputdata)): lres.append(inputdata[i][0]*self.params.step) |
---|
376 | if vmode=='verbose': |
---|
377 | print "Running with mode %s" % self.params.onsetmode, |
---|
378 | print " and threshold %f" % self.params.threshold, |
---|
379 | print " on file", self.input |
---|
380 | #print ltru; print lres |
---|
381 | if mode == 'local': |
---|
382 | l = onset_diffs(ltru,lres,self.params.tol) |
---|
383 | mean = 0 |
---|
384 | for i in l: mean += i |
---|
385 | if len(l): mean = "%.3f" % (mean/len(l)) |
---|
386 | else: mean = "?0" |
---|
387 | return l, mean |
---|
388 | elif mode == 'roc': |
---|
389 | self.orig, self.missed, self.merged, \ |
---|
390 | self.expc, self.bad, self.doubled = \ |
---|
391 | onset_roc(ltru,lres,self.params.tol) |
---|
392 | elif mode == 'rocloc': |
---|
393 | self.v = {} |
---|
394 | self.v['orig'], self.v['missed'], self.v['Tm'], \ |
---|
395 | self.v['expc'], self.v['bad'], self.v['Td'], \ |
---|
396 | self.v['l'], self.v['labs'] = \ |
---|
397 | onset_rocloc(ltru,lres,self.params.tol) |
---|
398 | |
---|
399 | def plot(self,onsets,ofunc,wplot,oplots,nplot=False): |
---|
400 | import Gnuplot, Gnuplot.funcutils |
---|
401 | import aubio.txtfile |
---|
402 | import os.path |
---|
403 | import numarray |
---|
404 | from aubio.onsetcompare import onset_roc |
---|
405 | |
---|
406 | x1,y1,y1p = [],[],[] |
---|
407 | oplot = [] |
---|
408 | if self.params.onsetmode in ('mkl','kl'): ofunc[0:10] = [0] * 10 |
---|
409 | |
---|
410 | self.lenofunc = len(ofunc) |
---|
411 | self.maxofunc = max(ofunc) |
---|
412 | # onset detection function |
---|
413 | downtime = numarray.arange(len(ofunc))*self.params.step |
---|
414 | oplot.append(Gnuplot.Data(downtime,ofunc,with='lines',title=self.params.onsetmode)) |
---|
415 | |
---|
416 | # detected onsets |
---|
417 | if not nplot: |
---|
418 | for i in onsets: |
---|
419 | x1.append(i[0]*self.params.step) |
---|
420 | y1.append(self.maxofunc) |
---|
421 | y1p.append(-self.maxofunc) |
---|
422 | #x1 = numarray.array(onsets)*self.params.step |
---|
423 | #y1 = self.maxofunc*numarray.ones(len(onsets)) |
---|
424 | if x1: |
---|
425 | oplot.append(Gnuplot.Data(x1,y1,with='impulses')) |
---|
426 | wplot.append(Gnuplot.Data(x1,y1p,with='impulses')) |
---|
427 | |
---|
428 | oplots.append(oplot) |
---|
429 | |
---|
430 | # check if datafile exists truth |
---|
431 | datafile = self.input.replace('.wav','.txt') |
---|
432 | if datafile == self.input: datafile = "" |
---|
433 | if not os.path.isfile(datafile): |
---|
434 | self.title = "" #"(no ground truth)" |
---|
435 | t = Gnuplot.Data(0,0,with='impulses') |
---|
436 | else: |
---|
437 | t_onsets = aubio.txtfile.read_datafile(datafile) |
---|
438 | x2 = numarray.array(t_onsets).resize(len(t_onsets)) |
---|
439 | y2 = self.maxofunc*numarray.ones(len(t_onsets)) |
---|
440 | wplot.append(Gnuplot.Data(x2,y2,with='impulses')) |
---|
441 | |
---|
442 | tol = 0.050 |
---|
443 | |
---|
444 | orig, missed, merged, expc, bad, doubled = \ |
---|
445 | onset_roc(x2,x1,tol) |
---|
446 | self.title = "GD %2.3f%% FP %2.3f%%" % \ |
---|
447 | ((100*float(orig-missed-merged)/(orig)), |
---|
448 | (100*float(bad+doubled)/(orig))) |
---|
449 | |
---|
450 | |
---|
451 | def plotplot(self,wplot,oplots,outplot=None): |
---|
452 | from aubio.gnuplot import gnuplot_init, audio_to_array, make_audio_plot |
---|
453 | import re |
---|
454 | # audio data |
---|
455 | time,data = audio_to_array(self.input) |
---|
456 | wplot = [make_audio_plot(time,data)] + wplot |
---|
457 | # prepare the plot |
---|
458 | g = gnuplot_init(outplot) |
---|
459 | |
---|
460 | g('set multiplot') |
---|
461 | |
---|
462 | # hack to align left axis |
---|
463 | g('set lmargin 6') |
---|
464 | g('set tmargin 0') |
---|
465 | g('set format x ""') |
---|
466 | g('set format y ""') |
---|
467 | g('set noytics') |
---|
468 | |
---|
469 | for i in range(len(oplots)): |
---|
470 | # plot onset detection functions |
---|
471 | g('set size 1,%f' % (0.7/(len(oplots)))) |
---|
472 | g('set origin 0,%f' % (float(i)*0.7/(len(oplots)))) |
---|
473 | g('set xrange [0:%f]' % (self.lenofunc*self.params.step)) |
---|
474 | g.plot(*oplots[i]) |
---|
475 | |
---|
476 | g('set tmargin 3.0') |
---|
477 | g('set xlabel "time (s)" 1,0') |
---|
478 | g('set format x "%1.1f"') |
---|
479 | |
---|
480 | g('set title \'%s %s\'' % (re.sub('.*/','',self.input),self.title)) |
---|
481 | |
---|
482 | # plot waveform and onsets |
---|
483 | g('set size 1,0.3') |
---|
484 | g('set origin 0,0.7') |
---|
485 | g('set xrange [0:%f]' % max(time)) |
---|
486 | g('set yrange [-1:1]') |
---|
487 | g.ylabel('amplitude') |
---|
488 | g.plot(*wplot) |
---|
489 | |
---|
490 | g('unset multiplot') |
---|
491 | |
---|
492 | class taskcut(task): |
---|
493 | def __init__(self,input,slicetimes,params=None,output=None): |
---|
494 | """ open the input file and initialize arguments |
---|
495 | parameters should be set *before* calling this method. |
---|
496 | """ |
---|
497 | task.__init__(self,input,output=None,params=params) |
---|
498 | self.newname = "%s%s%09.5f%s%s" % (self.input.split(".")[0].split("/")[-1],".", |
---|
499 | self.frameread*self.params.step,".",self.input.split(".")[-1]) |
---|
500 | self.fileo = sndfile(self.newname,model=self.filei) |
---|
501 | self.myvec = fvec(self.params.hopsize,self.channels) |
---|
502 | self.mycopy = fvec(self.params.hopsize,self.channels) |
---|
503 | self.slicetimes = slicetimes |
---|
504 | |
---|
505 | def __call__(self): |
---|
506 | task.__call__(self) |
---|
507 | # write to current file |
---|
508 | if len(self.slicetimes) and self.frameread >= self.slicetimes[0][0]: |
---|
509 | self.slicetimes.pop(0) |
---|
510 | # write up to 1st zero crossing |
---|
511 | zerocross = 0 |
---|
512 | while ( abs( self.myvec.get(zerocross,0) ) > self.params.zerothres ): |
---|
513 | zerocross += 1 |
---|
514 | writesize = self.fileo.write(zerocross,self.myvec) |
---|
515 | fromcross = 0 |
---|
516 | while (zerocross < self.readsize): |
---|
517 | for i in range(self.channels): |
---|
518 | self.mycopy.set(self.myvec.get(zerocross,i),fromcross,i) |
---|
519 | fromcross += 1 |
---|
520 | zerocross += 1 |
---|
521 | del self.fileo |
---|
522 | self.fileo = sndfile("%s%s%09.5f%s%s" % |
---|
523 | (self.input.split(".")[0].split("/")[-1],".", |
---|
524 | self.frameread*self.params.step,".",self.input.split(".")[-1]),model=self.filei) |
---|
525 | writesize = self.fileo.write(fromcross,self.mycopy) |
---|
526 | else: |
---|
527 | writesize = self.fileo.write(self.readsize,self.myvec) |
---|
528 | |
---|
529 | class taskbeat(taskonset): |
---|
530 | def __init__(self,input,params=None,output=None): |
---|
531 | """ open the input file and initialize arguments |
---|
532 | parameters should be set *before* calling this method. |
---|
533 | """ |
---|
534 | taskonset.__init__(self,input,output=None,params=params) |
---|
535 | self.btwinlen = 512**2/self.params.hopsize |
---|
536 | self.btstep = self.btwinlen/4 |
---|
537 | self.btoutput = fvec(self.btstep,self.channels) |
---|
538 | self.dfframe = fvec(self.btwinlen,self.channels) |
---|
539 | self.bt = beattracking(self.btwinlen,self.channels) |
---|
540 | self.pos2 = 0 |
---|
541 | |
---|
542 | def __call__(self): |
---|
543 | taskonset.__call__(self) |
---|
544 | # write to current file |
---|
545 | if self.pos2 == self.btstep - 1 : |
---|
546 | self.bt.do(self.dfframe,self.btoutput) |
---|
547 | for i in range (self.btwinlen - self.btstep): |
---|
548 | self.dfframe.set(self.dfframe.get(i+self.btstep,0),i,0) |
---|
549 | for i in range(self.btwinlen - self.btstep, self.btwinlen): |
---|
550 | self.dfframe.set(0,i,0) |
---|
551 | self.pos2 = -1; |
---|
552 | self.pos2 += 1 |
---|
553 | val = self.opick.pp.getval() |
---|
554 | self.dfframe.set(val,self.btwinlen - self.btstep + self.pos2,0) |
---|
555 | i=0 |
---|
556 | for i in range(1,int( self.btoutput.get(0,0) ) ): |
---|
557 | if self.pos2 == self.btoutput.get(i,0) and \ |
---|
558 | aubio_silence_detection(self.myvec(), |
---|
559 | self.params.silence)!=1: |
---|
560 | return self.frameread, 0 |
---|
561 | |
---|
562 | def eval(self,results): |
---|
563 | pass |
---|