#! /usr/bin/env python # Implementation of the timescale algorithm according to Dan Ellis, *A Phase # Vocoder in Matlab*. http://www.ee.columbia.edu/~dpwe/resources/matlab/pvoc/ # This file follows the original implementation, with analysis in a first pass, # and synthesis in a second pass. import sys from aubio import source, sink, pvoc, mfcc, cvec from aubio import unwrap2pi, float_type import numpy as np win_s = 1024 hop_s = win_s / 8 # 87.5 % overlap warmup = win_s // hop_s - 1 if len(sys.argv) < 3: print("Usage: %s [samplerate]".format(sys.argv[0])) print("""Examples: # twice faster {0} track_01.mp3 track_01_faster.wav 2.0 # twice slower {0} track_02.flac track_02_slower.wav 0.5 # one and a half time faster, resampling first the input to 22050 {0} track_02.flac track_02_slower.wav 1.5 22050""".format(sys.argv[0])) sys.exit(1) source_filename = sys.argv[1] output_filename = sys.argv[2] rate = float(sys.argv[3]) samplerate = 0 if len(sys.argv) < 5 else int(sys.argv[4]) source_in = source(source_filename, samplerate, hop_s) samplerate = source_in.samplerate p = pvoc(win_s, hop_s) # allocate memory to store norms and phases n_blocks = source_in.duration // hop_s + 1 # adding an empty frame at end of spectrogram norms = np.zeros((n_blocks + 1, win_s // 2 + 1), dtype = float_type) phases = np.zeros((n_blocks + 1, win_s // 2 + 1), dtype = float_type) block_read = 0 while True: # read from source samples, read = source_in() # compute fftgrain spec = p(samples) # store current grain norms[block_read] = spec.norm phases[block_read] = spec.phas # until end of file if read < hop_s: break # increment block counter block_read += 1 # just to make sure #source_in.close() sink_out = sink(output_filename, samplerate) # interpolated time steps (j = alpha * i) steps = np.arange(0, n_blocks, rate, dtype = float_type) # initial phase phas_acc = phases[0] # excepted phase advance in each bin phi_advance = np.linspace(0, np.pi * hop_s, win_s / 2 + 1).astype (float_type) new_grain = cvec(win_s) for (t, step) in enumerate(steps): frac = 1. - np.mod(step, 1.0) # get pair of frames t_norms = norms[int(step):int(step+2)] t_phases = phases[int(step):int(step+2)] # compute interpolated frame new_grain.norm = frac * t_norms[0] + (1. - frac) * t_norms[1] new_grain.phas = phas_acc #print t, step, new_grain.norm #print t, step, phas_acc # psola samples = p.rdo(new_grain) if t > warmup: # skip the first few frames to warm up phase vocoder # write to sink sink_out(samples, hop_s) # calculate phase advance dphas = t_phases[1] - t_phases[0] - phi_advance # unwrap angle to [-pi; pi] dphas = unwrap2pi(dphas) # cumulate phase, to be used for next frame phas_acc += phi_advance + dphas for t in range(warmup + 1): # purge the last frames from the phase vocoder new_grain.norm[:] = 0 new_grain.phas[:] = 0 samples = p.rdo(new_grain) sink_out(samples, read if t == warmup else hop_s) # just to make sure #sink_out.close() format_out = "read {:d} blocks from {:s} at {:d}Hz and rate {:f}, wrote {:d} blocks to {:s}" print (format_out.format(block_read, source_filename, samplerate, rate, len(steps), output_filename))