[7b2a58c] | 1 | /* |
---|
| 2 | Copyright (C) 2018 Paul Brossier <piem@aubio.org> |
---|
| 3 | |
---|
| 4 | This file is part of aubio. |
---|
| 5 | |
---|
| 6 | aubio is free software: you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation, either version 3 of the License, or |
---|
| 9 | (at your option) any later version. |
---|
| 10 | |
---|
| 11 | aubio is distributed in the hope that it will be useful, |
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 14 | GNU General Public License for more details. |
---|
| 15 | |
---|
| 16 | You should have received a copy of the GNU General Public License |
---|
| 17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
| 18 | |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | #include "aubio_priv.h" |
---|
| 22 | #include "fmat.h" |
---|
| 23 | #include "tensor.h" |
---|
| 24 | #include "batchnorm.h" |
---|
| 25 | |
---|
| 26 | struct _aubio_batchnorm_t { |
---|
| 27 | uint_t n_outputs; |
---|
| 28 | fvec_t *gamma; |
---|
| 29 | fvec_t *beta; |
---|
| 30 | fvec_t *moving_mean; |
---|
| 31 | fvec_t *moving_variance; |
---|
| 32 | }; |
---|
| 33 | |
---|
| 34 | static void aubio_batchnorm_debug(aubio_batchnorm_t *c, |
---|
| 35 | aubio_tensor_t *input_tensor); |
---|
| 36 | |
---|
| 37 | aubio_batchnorm_t *new_aubio_batchnorm(uint_t n_outputs) |
---|
| 38 | { |
---|
| 39 | aubio_batchnorm_t *c = AUBIO_NEW(aubio_batchnorm_t); |
---|
| 40 | |
---|
| 41 | AUBIO_GOTO_FAILURE((sint_t)n_outputs > 0); |
---|
| 42 | |
---|
| 43 | c->n_outputs = n_outputs; |
---|
| 44 | |
---|
| 45 | c->gamma = new_fvec(n_outputs); |
---|
| 46 | c->beta = new_fvec(n_outputs); |
---|
| 47 | c->moving_mean = new_fvec(n_outputs); |
---|
| 48 | c->moving_variance = new_fvec(n_outputs); |
---|
| 49 | |
---|
| 50 | return c; |
---|
| 51 | |
---|
| 52 | failure: |
---|
| 53 | del_aubio_batchnorm(c); |
---|
| 54 | return NULL; |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | void del_aubio_batchnorm(aubio_batchnorm_t* c) { |
---|
| 58 | AUBIO_ASSERT(c); |
---|
| 59 | if (c->gamma) |
---|
| 60 | del_fvec(c->gamma); |
---|
| 61 | if (c->beta) |
---|
| 62 | del_fvec(c->beta); |
---|
| 63 | if (c->moving_mean) |
---|
| 64 | del_fvec(c->moving_mean); |
---|
| 65 | if (c->moving_variance) |
---|
| 66 | del_fvec(c->moving_variance); |
---|
| 67 | AUBIO_FREE(c); |
---|
| 68 | } |
---|
| 69 | |
---|
| 70 | void aubio_batchnorm_debug(aubio_batchnorm_t *c, aubio_tensor_t *input_tensor) |
---|
| 71 | { |
---|
[bee3d52] | 72 | AUBIO_DBG("batchnorm: %15s -> %s (%d params) (4 * (%d,))\n", |
---|
| 73 | aubio_tensor_get_shape_string(input_tensor), |
---|
| 74 | aubio_tensor_get_shape_string(input_tensor), // same output shape |
---|
| 75 | c->n_outputs, 4 * c->n_outputs); |
---|
[7b2a58c] | 76 | } |
---|
| 77 | |
---|
| 78 | uint_t aubio_batchnorm_get_output_shape(aubio_batchnorm_t *c, |
---|
| 79 | aubio_tensor_t *input, uint_t *shape) |
---|
| 80 | { |
---|
| 81 | AUBIO_ASSERT(c && input && shape); |
---|
| 82 | |
---|
| 83 | shape[0] = input->shape[0]; |
---|
| 84 | shape[1] = input->shape[1]; |
---|
| 85 | shape[2] = input->shape[2]; |
---|
| 86 | |
---|
| 87 | aubio_batchnorm_debug(c, input); |
---|
| 88 | |
---|
| 89 | return AUBIO_OK; |
---|
| 90 | } |
---|
| 91 | |
---|
| 92 | void aubio_batchnorm_do(aubio_batchnorm_t *c, aubio_tensor_t *input_tensor, |
---|
| 93 | aubio_tensor_t *activations) |
---|
| 94 | { |
---|
| 95 | uint_t i, j, k; |
---|
| 96 | uint_t jj; |
---|
| 97 | smpl_t s; |
---|
| 98 | AUBIO_ASSERT(c); |
---|
| 99 | AUBIO_ASSERT_EQUAL_SHAPE(input_tensor, activations); |
---|
| 100 | if (input_tensor->ndim == 3) { |
---|
| 101 | for (i = 0; i < activations->shape[0]; i++) { |
---|
| 102 | jj = 0; |
---|
| 103 | for (j = 0; j < activations->shape[1]; j++) { |
---|
| 104 | for (k = 0; k < activations->shape[2]; k++) { |
---|
| 105 | s = input_tensor->data[i][jj + k]; |
---|
| 106 | s -= c->moving_mean->data[k]; |
---|
| 107 | s *= c->gamma->data[k]; |
---|
| 108 | s /= SQRT(c->moving_variance->data[k] + 1.e-4); |
---|
| 109 | s += c->beta->data[k]; |
---|
| 110 | activations->data[i][jj + k] = s; |
---|
| 111 | } |
---|
| 112 | jj += activations->shape[2]; |
---|
| 113 | } |
---|
| 114 | } |
---|
| 115 | } else if (input_tensor->ndim == 2) { |
---|
| 116 | for (i = 0; i < activations->shape[0]; i++) { |
---|
| 117 | for (j = 0; j < activations->shape[1]; j++) { |
---|
| 118 | s = input_tensor->data[i][j]; |
---|
| 119 | s -= c->moving_mean->data[j]; |
---|
| 120 | s *= c->gamma->data[j]; |
---|
| 121 | s /= SQRT(c->moving_variance->data[j] + 1.e-4); |
---|
| 122 | s += c->beta->data[j]; |
---|
| 123 | activations->data[i][j] = s; |
---|
| 124 | } |
---|
| 125 | } |
---|
| 126 | } |
---|
| 127 | } |
---|
| 128 | |
---|
| 129 | uint_t aubio_batchnorm_set_gamma(aubio_batchnorm_t *t, fvec_t *gamma) |
---|
| 130 | { |
---|
| 131 | AUBIO_ASSERT(t && t->gamma); |
---|
| 132 | AUBIO_ASSERT(gamma); |
---|
| 133 | if (t->gamma->length != gamma->length) return AUBIO_FAIL; |
---|
| 134 | fvec_copy(gamma, t->gamma); |
---|
| 135 | return AUBIO_OK; |
---|
| 136 | } |
---|
| 137 | |
---|
| 138 | uint_t aubio_batchnorm_set_beta(aubio_batchnorm_t *t, fvec_t *beta) |
---|
| 139 | { |
---|
| 140 | AUBIO_ASSERT(t && t->beta); |
---|
| 141 | AUBIO_ASSERT(beta); |
---|
| 142 | if (t->beta->length != beta->length) return AUBIO_FAIL; |
---|
| 143 | fvec_copy(beta, t->beta); |
---|
| 144 | return AUBIO_OK; |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | uint_t aubio_batchnorm_set_moving_mean(aubio_batchnorm_t *t, fvec_t *moving_mean) |
---|
| 148 | { |
---|
| 149 | AUBIO_ASSERT(t && t->moving_mean); |
---|
| 150 | AUBIO_ASSERT(moving_mean); |
---|
| 151 | if (t->moving_mean->length != moving_mean->length) return AUBIO_FAIL; |
---|
| 152 | fvec_copy(moving_mean, t->moving_mean); |
---|
| 153 | return AUBIO_OK; |
---|
| 154 | } |
---|
| 155 | |
---|
| 156 | uint_t aubio_batchnorm_set_moving_variance(aubio_batchnorm_t *t, fvec_t *moving_variance) |
---|
| 157 | { |
---|
| 158 | AUBIO_ASSERT(t && t->moving_variance); |
---|
| 159 | AUBIO_ASSERT(moving_variance); |
---|
| 160 | if (t->moving_variance->length != moving_variance->length) return AUBIO_FAIL; |
---|
| 161 | fvec_copy(moving_variance, t->moving_variance); |
---|
| 162 | return AUBIO_OK; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | fvec_t *aubio_batchnorm_get_gamma(aubio_batchnorm_t *t) |
---|
| 166 | { |
---|
| 167 | AUBIO_ASSERT(t && t->gamma); |
---|
| 168 | return t->gamma; |
---|
| 169 | } |
---|
| 170 | |
---|
| 171 | fvec_t *aubio_batchnorm_get_beta(aubio_batchnorm_t *t) |
---|
| 172 | { |
---|
| 173 | AUBIO_ASSERT(t && t->beta); |
---|
| 174 | return t->beta; |
---|
| 175 | } |
---|
| 176 | |
---|
| 177 | fvec_t *aubio_batchnorm_get_moving_mean(aubio_batchnorm_t *t) |
---|
| 178 | { |
---|
| 179 | AUBIO_ASSERT(t && t->moving_mean); |
---|
| 180 | return t->moving_mean; |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | fvec_t *aubio_batchnorm_get_moving_variance(aubio_batchnorm_t *t) |
---|
| 184 | { |
---|
| 185 | AUBIO_ASSERT(t && t->moving_variance); |
---|
| 186 | return t->moving_variance; |
---|
| 187 | } |
---|