[2fec649] | 1 | /* |
---|
| 2 | Copyright (C) 2018 Paul Brossier <piem@aubio.org> |
---|
| 3 | |
---|
| 4 | This file is part of aubio. |
---|
| 5 | |
---|
| 6 | aubio is free software: you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation, either version 3 of the License, or |
---|
| 9 | (at your option) any later version. |
---|
| 10 | |
---|
| 11 | aubio is distributed in the hope that it will be useful, |
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 14 | GNU General Public License for more details. |
---|
| 15 | |
---|
| 16 | You should have received a copy of the GNU General Public License |
---|
| 17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
| 18 | |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | #ifndef AUBIO_BATCHNORM_H |
---|
| 22 | #define AUBIO_BATCHNORM_H |
---|
| 23 | |
---|
| 24 | /** \file |
---|
| 25 | |
---|
| 26 | Batch normalization layer. |
---|
| 27 | |
---|
| 28 | References |
---|
| 29 | ---------- |
---|
| 30 | |
---|
| 31 | Ioffe, Sergey; Szegedy, Christian. "Batch Normalization: Accelerating Deep |
---|
| 32 | Network Training by Reducing Internal Covariate Shift", available online |
---|
| 33 | at https://arxiv.org/pdf/1502.03167.pdf |
---|
| 34 | |
---|
| 35 | */ |
---|
| 36 | |
---|
[75662eb] | 37 | #ifdef __cplusplus |
---|
| 38 | extern "C" { |
---|
| 39 | #endif |
---|
| 40 | |
---|
| 41 | /** batch normalization layer */ |
---|
[2fec649] | 42 | typedef struct _aubio_batchnorm_t aubio_batchnorm_t; |
---|
| 43 | |
---|
[75662eb] | 44 | /** create a new batch normalization layer |
---|
| 45 | |
---|
| 46 | This layer takes no parameters. The number of output channels will be |
---|
| 47 | determined as the inner-most dimension of the input tensor when calling |
---|
| 48 | ::aubio_batchnorm_get_output_shape. |
---|
| 49 | |
---|
| 50 | */ |
---|
[689ba93] | 51 | aubio_batchnorm_t *new_aubio_batchnorm(void); |
---|
[2fec649] | 52 | |
---|
[75662eb] | 53 | /** get output shape of the layer |
---|
[2fec649] | 54 | |
---|
[75662eb] | 55 | \param t ::aubio_batchnorm_t layer |
---|
| 56 | \param input input tensor |
---|
| 57 | \param shape output shape |
---|
| 58 | |
---|
| 59 | This function determines the number of output channels required and allocate |
---|
| 60 | the vectors of weights. The ouptut shape of this layer is identical to the |
---|
| 61 | input shape. |
---|
| 62 | |
---|
| 63 | */ |
---|
| 64 | uint_t aubio_batchnorm_get_output_shape(aubio_batchnorm_t *t, |
---|
| 65 | aubio_tensor_t *input, uint_t *shape); |
---|
[2fec649] | 66 | |
---|
[75662eb] | 67 | /** get a pointer to the gamma vector |
---|
| 68 | |
---|
| 69 | \param t ::aubio_batchnorm_t layer |
---|
| 70 | |
---|
| 71 | \return pointer to `fvec_t` holding the gamma parameters |
---|
| 72 | |
---|
| 73 | When called after ::aubio_batchnorm_get_output_shape, this function will |
---|
| 74 | return a pointer to the vector allocated to hold the `gamma` weights. |
---|
| 75 | |
---|
| 76 | A NULL pointer will be returned if ::aubio_batchnorm_get_output_shape has not |
---|
| 77 | been called yet. |
---|
| 78 | |
---|
| 79 | */ |
---|
[2fec649] | 80 | fvec_t *aubio_batchnorm_get_gamma(aubio_batchnorm_t *t); |
---|
[75662eb] | 81 | |
---|
| 82 | /** get a pointer to the beta vector |
---|
| 83 | |
---|
| 84 | \param t ::aubio_batchnorm_t layer |
---|
| 85 | |
---|
| 86 | \return pointer to `fvec_t` holding the beta parameters |
---|
| 87 | */ |
---|
[2fec649] | 88 | fvec_t *aubio_batchnorm_get_beta(aubio_batchnorm_t *t); |
---|
[75662eb] | 89 | |
---|
| 90 | /** get a pointer to the moving mean vector |
---|
| 91 | |
---|
| 92 | \param t ::aubio_batchnorm_t layer |
---|
| 93 | |
---|
| 94 | \return pointer to `fvec_t` holding the moving mean parameters |
---|
| 95 | |
---|
| 96 | */ |
---|
[2fec649] | 97 | fvec_t *aubio_batchnorm_get_moving_mean(aubio_batchnorm_t *t); |
---|
[75662eb] | 98 | |
---|
| 99 | /** get a pointer to the moving variance vector |
---|
| 100 | |
---|
| 101 | \param t ::aubio_batchnorm_t layer |
---|
| 102 | |
---|
| 103 | \return pointer to `fvec_t` holding the moving variance parameters |
---|
| 104 | |
---|
| 105 | */ |
---|
[2fec649] | 106 | fvec_t *aubio_batchnorm_get_moving_variance(aubio_batchnorm_t *t); |
---|
| 107 | |
---|
[75662eb] | 108 | /** set gamma vector of batchnorm layer |
---|
| 109 | |
---|
| 110 | \param t ::aubio_batchnorm_t layer |
---|
| 111 | \param gamma ::fvec_t containing the weights |
---|
| 112 | |
---|
| 113 | \return 0 on success, non-zero otherwise. |
---|
| 114 | |
---|
| 115 | This function will copy the content of an existing vector into |
---|
| 116 | the corresponding vector of weights in `t`. |
---|
| 117 | |
---|
| 118 | Note: to spare a copy and load directly the data in `t`, |
---|
| 119 | ::aubio_batchnorm_get_gamma can be used instead. |
---|
| 120 | |
---|
| 121 | */ |
---|
| 122 | uint_t aubio_batchnorm_set_gamma(aubio_batchnorm_t *t, fvec_t *gamma); |
---|
| 123 | |
---|
| 124 | /** set beta vector of a batchnorm layer |
---|
| 125 | |
---|
| 126 | \param t ::aubio_batchnorm_t layer |
---|
| 127 | \param beta ::fvec_t containing the weights |
---|
| 128 | |
---|
| 129 | \return 0 on success, non-zero otherwise. |
---|
| 130 | |
---|
| 131 | */ |
---|
| 132 | uint_t aubio_batchnorm_set_beta(aubio_batchnorm_t *t, fvec_t *beta); |
---|
| 133 | |
---|
| 134 | /** set moving mean vector of batchnorm layer |
---|
[2fec649] | 135 | |
---|
[75662eb] | 136 | \param t ::aubio_batchnorm_t layer |
---|
| 137 | \param moving_mean ::fvec_t containing the weights |
---|
| 138 | |
---|
| 139 | \return 0 on success, non-zero otherwise. |
---|
| 140 | |
---|
| 141 | */ |
---|
| 142 | uint_t aubio_batchnorm_set_moving_mean(aubio_batchnorm_t *t, |
---|
| 143 | fvec_t *moving_mean); |
---|
| 144 | |
---|
| 145 | /** set moving variance vector of batchnorm layer |
---|
| 146 | |
---|
| 147 | \param t ::aubio_batchnorm_t layer |
---|
| 148 | \param moving_variance ::fvec_t containing the weights |
---|
| 149 | |
---|
| 150 | \return 0 on success, non-zero otherwise. |
---|
| 151 | |
---|
| 152 | */ |
---|
| 153 | uint_t aubio_batchnorm_set_moving_variance(aubio_batchnorm_t *t, |
---|
| 154 | fvec_t *moving_variance); |
---|
| 155 | |
---|
| 156 | /** compute batch normalization layer |
---|
| 157 | |
---|
| 158 | \param t ::aubio_batchnorm_t layer |
---|
| 159 | \param input_tensor input tensor |
---|
| 160 | \param activations output tensor |
---|
| 161 | |
---|
| 162 | \return 0 on success, non-zero otherwise. |
---|
| 163 | |
---|
| 164 | */ |
---|
| 165 | void aubio_batchnorm_do(aubio_batchnorm_t *t, aubio_tensor_t *input_tensor, |
---|
| 166 | aubio_tensor_t *activations); |
---|
| 167 | |
---|
| 168 | /** delete batch normalization layer |
---|
| 169 | |
---|
| 170 | \param t ::aubio_batchnorm_t layer to delete |
---|
| 171 | |
---|
| 172 | */ |
---|
[2fec649] | 173 | void del_aubio_batchnorm(aubio_batchnorm_t *t); |
---|
| 174 | |
---|
| 175 | #ifdef __cplusplus |
---|
| 176 | } |
---|
| 177 | #endif |
---|
| 178 | |
---|
| 179 | #endif /* AUBIO_BATCHNORM_H */ |
---|