1 | /* |
---|
2 | Copyright (C) 2018 Paul Brossier <piem@aubio.org> |
---|
3 | |
---|
4 | This file is part of aubio. |
---|
5 | |
---|
6 | aubio is free software: you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation, either version 3 of the License, or |
---|
9 | (at your option) any later version. |
---|
10 | |
---|
11 | aubio is distributed in the hope that it will be useful, |
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
14 | GNU General Public License for more details. |
---|
15 | |
---|
16 | You should have received a copy of the GNU General Public License |
---|
17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
18 | |
---|
19 | */ |
---|
20 | |
---|
21 | #ifndef AUBIO_BATCHNORM_H |
---|
22 | #define AUBIO_BATCHNORM_H |
---|
23 | |
---|
24 | /** \file |
---|
25 | |
---|
26 | Batch normalization layer. |
---|
27 | |
---|
28 | References |
---|
29 | ---------- |
---|
30 | |
---|
31 | Ioffe, Sergey; Szegedy, Christian. "Batch Normalization: Accelerating Deep |
---|
32 | Network Training by Reducing Internal Covariate Shift", available online |
---|
33 | at https://arxiv.org/pdf/1502.03167.pdf |
---|
34 | |
---|
35 | */ |
---|
36 | |
---|
37 | #ifdef __cplusplus |
---|
38 | extern "C" { |
---|
39 | #endif |
---|
40 | |
---|
41 | /** batch normalization layer */ |
---|
42 | typedef struct _aubio_batchnorm_t aubio_batchnorm_t; |
---|
43 | |
---|
44 | /** create a new batch normalization layer |
---|
45 | |
---|
46 | This layer takes no parameters. The number of output channels will be |
---|
47 | determined as the inner-most dimension of the input tensor when calling |
---|
48 | ::aubio_batchnorm_get_output_shape. |
---|
49 | |
---|
50 | */ |
---|
51 | aubio_batchnorm_t *new_aubio_batchnorm(void); |
---|
52 | |
---|
53 | /** get output shape of the layer |
---|
54 | |
---|
55 | \param t ::aubio_batchnorm_t layer |
---|
56 | \param input input tensor |
---|
57 | \param shape output shape |
---|
58 | |
---|
59 | \return 0 on success, non-zero otherwise |
---|
60 | |
---|
61 | This function determines the number of output channels required and allocate |
---|
62 | the vectors of weights. The ouptut shape of this layer is identical to the |
---|
63 | input shape. |
---|
64 | |
---|
65 | */ |
---|
66 | uint_t aubio_batchnorm_get_output_shape(aubio_batchnorm_t *t, |
---|
67 | aubio_tensor_t *input, uint_t *shape); |
---|
68 | |
---|
69 | /** get a pointer to the gamma vector |
---|
70 | |
---|
71 | \param t ::aubio_batchnorm_t layer |
---|
72 | |
---|
73 | \return pointer to `fvec_t` holding the gamma parameters |
---|
74 | |
---|
75 | When called after ::aubio_batchnorm_get_output_shape, this function will |
---|
76 | return a pointer to the vector allocated to hold the `gamma` weights. |
---|
77 | |
---|
78 | A NULL pointer will be returned if ::aubio_batchnorm_get_output_shape has not |
---|
79 | been called yet. |
---|
80 | |
---|
81 | */ |
---|
82 | fvec_t *aubio_batchnorm_get_gamma(aubio_batchnorm_t *t); |
---|
83 | |
---|
84 | /** get a pointer to the beta vector |
---|
85 | |
---|
86 | \param t ::aubio_batchnorm_t layer |
---|
87 | |
---|
88 | \return pointer to `fvec_t` holding the beta parameters |
---|
89 | */ |
---|
90 | fvec_t *aubio_batchnorm_get_beta(aubio_batchnorm_t *t); |
---|
91 | |
---|
92 | /** get a pointer to the moving mean vector |
---|
93 | |
---|
94 | \param t ::aubio_batchnorm_t layer |
---|
95 | |
---|
96 | \return pointer to `fvec_t` holding the moving mean parameters |
---|
97 | |
---|
98 | */ |
---|
99 | fvec_t *aubio_batchnorm_get_moving_mean(aubio_batchnorm_t *t); |
---|
100 | |
---|
101 | /** get a pointer to the moving variance vector |
---|
102 | |
---|
103 | \param t ::aubio_batchnorm_t layer |
---|
104 | |
---|
105 | \return pointer to `fvec_t` holding the moving variance parameters |
---|
106 | |
---|
107 | */ |
---|
108 | fvec_t *aubio_batchnorm_get_moving_variance(aubio_batchnorm_t *t); |
---|
109 | |
---|
110 | /** set gamma vector of batchnorm layer |
---|
111 | |
---|
112 | \param t ::aubio_batchnorm_t layer |
---|
113 | \param gamma ::fvec_t containing the weights |
---|
114 | |
---|
115 | \return 0 on success, non-zero otherwise. |
---|
116 | |
---|
117 | This function will copy the content of an existing vector into |
---|
118 | the corresponding vector of weights in `t`. |
---|
119 | |
---|
120 | Note: to spare a copy and load directly the data in `t`, |
---|
121 | ::aubio_batchnorm_get_gamma can be used instead. |
---|
122 | |
---|
123 | */ |
---|
124 | uint_t aubio_batchnorm_set_gamma(aubio_batchnorm_t *t, fvec_t *gamma); |
---|
125 | |
---|
126 | /** set beta vector of a batchnorm layer |
---|
127 | |
---|
128 | \param t ::aubio_batchnorm_t layer |
---|
129 | \param beta ::fvec_t containing the weights |
---|
130 | |
---|
131 | \return 0 on success, non-zero otherwise. |
---|
132 | |
---|
133 | */ |
---|
134 | uint_t aubio_batchnorm_set_beta(aubio_batchnorm_t *t, fvec_t *beta); |
---|
135 | |
---|
136 | /** set moving mean vector of batchnorm layer |
---|
137 | |
---|
138 | \param t ::aubio_batchnorm_t layer |
---|
139 | \param moving_mean ::fvec_t containing the weights |
---|
140 | |
---|
141 | \return 0 on success, non-zero otherwise. |
---|
142 | |
---|
143 | */ |
---|
144 | uint_t aubio_batchnorm_set_moving_mean(aubio_batchnorm_t *t, |
---|
145 | fvec_t *moving_mean); |
---|
146 | |
---|
147 | /** set moving variance vector of batchnorm layer |
---|
148 | |
---|
149 | \param t ::aubio_batchnorm_t layer |
---|
150 | \param moving_variance ::fvec_t containing the weights |
---|
151 | |
---|
152 | \return 0 on success, non-zero otherwise. |
---|
153 | |
---|
154 | */ |
---|
155 | uint_t aubio_batchnorm_set_moving_variance(aubio_batchnorm_t *t, |
---|
156 | fvec_t *moving_variance); |
---|
157 | |
---|
158 | /** compute batch normalization layer |
---|
159 | |
---|
160 | \param t ::aubio_batchnorm_t layer |
---|
161 | \param input_tensor input tensor |
---|
162 | \param activations output tensor |
---|
163 | |
---|
164 | */ |
---|
165 | void aubio_batchnorm_do(aubio_batchnorm_t *t, aubio_tensor_t *input_tensor, |
---|
166 | aubio_tensor_t *activations); |
---|
167 | |
---|
168 | /** delete batch normalization layer |
---|
169 | |
---|
170 | \param t ::aubio_batchnorm_t layer to delete |
---|
171 | |
---|
172 | */ |
---|
173 | void del_aubio_batchnorm(aubio_batchnorm_t *t); |
---|
174 | |
---|
175 | #ifdef __cplusplus |
---|
176 | } |
---|
177 | #endif |
---|
178 | |
---|
179 | #endif /* AUBIO_BATCHNORM_H */ |
---|