[322e079] | 1 | /* |
---|
| 2 | Copyright (C) 2018 Paul Brossier <piem@aubio.org> |
---|
| 3 | |
---|
| 4 | This file is part of aubio. |
---|
| 5 | |
---|
| 6 | aubio is free software: you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation, either version 3 of the License, or |
---|
| 9 | (at your option) any later version. |
---|
| 10 | |
---|
| 11 | aubio is distributed in the hope that it will be useful, |
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 14 | GNU General Public License for more details. |
---|
| 15 | |
---|
| 16 | You should have received a copy of the GNU General Public License |
---|
| 17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
| 18 | |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | |
---|
| 22 | #include "aubio_priv.h" |
---|
| 23 | #include "fmat.h" |
---|
| 24 | #include "tensor.h" |
---|
| 25 | #include "conv1d.h" |
---|
| 26 | |
---|
| 27 | typedef enum |
---|
| 28 | { |
---|
| 29 | PAD_SAME = 0, |
---|
| 30 | PAD_VALID = 1, |
---|
| 31 | PAD_CAUSAL = 2, // TODO (1d only, for dilated convolution) |
---|
| 32 | } aubio_conv1d_padding_type; |
---|
| 33 | |
---|
| 34 | struct _aubio_conv1d_t { |
---|
| 35 | // define internals here |
---|
| 36 | uint_t n_filters; |
---|
| 37 | uint_t kernel_shape; // kernel sizes |
---|
| 38 | uint_t stride_shape; // stride sizes |
---|
| 39 | |
---|
| 40 | aubio_conv1d_padding_type padding_mode; |
---|
| 41 | |
---|
| 42 | // these will be set after calling get_output_shape |
---|
| 43 | aubio_tensor_t *kernel; |
---|
| 44 | fvec_t *bias; |
---|
[977a5c3] | 45 | uint_t output_shape[2]; // shape of output |
---|
| 46 | uint_t padding_start; // left padding |
---|
[3ffea61d] | 47 | |
---|
| 48 | #if defined(HAVE_BLAS) |
---|
| 49 | aubio_tensor_t *padded_input; |
---|
| 50 | #endif |
---|
[322e079] | 51 | }; |
---|
| 52 | |
---|
[1aa6eb8] | 53 | static |
---|
| 54 | void aubio_conv1d_debug(aubio_conv1d_t *c, aubio_tensor_t *input_tensor); |
---|
[322e079] | 55 | |
---|
| 56 | aubio_conv1d_t *new_aubio_conv1d(uint_t n_filters, uint_t kernel_shape[1]) |
---|
| 57 | { |
---|
| 58 | aubio_conv1d_t *c = AUBIO_NEW(aubio_conv1d_t); |
---|
| 59 | |
---|
| 60 | // validate input parameters |
---|
| 61 | AUBIO_GOTO_FAILURE((sint_t)n_filters >= 1); |
---|
| 62 | AUBIO_GOTO_FAILURE((sint_t)kernel_shape[0] >= 1); |
---|
| 63 | |
---|
| 64 | // set internal variables |
---|
| 65 | c->n_filters = n_filters; |
---|
| 66 | c->kernel_shape = kernel_shape[0]; |
---|
| 67 | |
---|
| 68 | // default to padding_mode="valid" |
---|
| 69 | c->padding_mode = PAD_VALID; |
---|
| 70 | // set default stride_shape to (1) |
---|
| 71 | uint_t stride_shape[1] = {1}; |
---|
| 72 | aubio_conv1d_set_stride(c, stride_shape); |
---|
| 73 | |
---|
| 74 | return c; |
---|
| 75 | |
---|
| 76 | failure: |
---|
| 77 | del_aubio_conv1d(c); |
---|
| 78 | return NULL; |
---|
| 79 | } |
---|
| 80 | |
---|
| 81 | void del_aubio_conv1d(aubio_conv1d_t *c) |
---|
| 82 | { |
---|
| 83 | AUBIO_ASSERT(c); |
---|
| 84 | // destroy internals here |
---|
| 85 | if (c->kernel) { |
---|
| 86 | del_aubio_tensor(c->kernel); |
---|
| 87 | } |
---|
| 88 | if (c->bias) |
---|
| 89 | del_fvec(c->bias); |
---|
[3ffea61d] | 90 | #if defined(HAVE_BLAS) |
---|
| 91 | if (c->padded_input) del_aubio_tensor(c->padded_input); |
---|
| 92 | #endif |
---|
[322e079] | 93 | AUBIO_FREE(c); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | |
---|
| 97 | uint_t aubio_conv1d_set_stride(aubio_conv1d_t *c, uint_t stride[1]) |
---|
| 98 | { |
---|
| 99 | if ((sint_t)stride[0] < 1) return AUBIO_FAIL; |
---|
| 100 | c->stride_shape = stride[0]; |
---|
| 101 | return AUBIO_OK; |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | uint_t aubio_conv1d_get_stride(aubio_conv1d_t *c) |
---|
| 105 | { |
---|
| 106 | return c->stride_shape; |
---|
| 107 | } |
---|
| 108 | |
---|
| 109 | uint_t aubio_conv1d_get_output_shape(aubio_conv1d_t *c, |
---|
| 110 | aubio_tensor_t *input_tensor, |
---|
| 111 | uint_t *shape) |
---|
| 112 | { |
---|
| 113 | uint_t output_shape[2] = {0, c->n_filters}; |
---|
[3ffea61d] | 114 | uint_t padding_shape = 0; // total amount of padding |
---|
[322e079] | 115 | uint_t padding_start = 0; |
---|
| 116 | |
---|
| 117 | // check input parameters |
---|
| 118 | AUBIO_ASSERT(input_tensor); |
---|
| 119 | AUBIO_ASSERT(shape); |
---|
| 120 | |
---|
| 121 | // reset output array |
---|
| 122 | shape[0] = 0; |
---|
| 123 | shape[1] = 0; |
---|
| 124 | |
---|
| 125 | switch (c->padding_mode) { |
---|
| 126 | case PAD_SAME: |
---|
| 127 | // compute output shape |
---|
[6e4ef27] | 128 | output_shape[0] = (uint_t)CEIL(input_tensor->shape[0] |
---|
[322e079] | 129 | / (smpl_t)c->stride_shape); |
---|
| 130 | |
---|
| 131 | padding_shape = (output_shape[0] - 1) * c->stride_shape + |
---|
[6e4ef27] | 132 | c->kernel_shape - input_tensor->shape[0]; |
---|
[322e079] | 133 | |
---|
| 134 | padding_start = FLOOR(padding_shape / 2); |
---|
| 135 | break; |
---|
| 136 | case PAD_VALID: |
---|
[6e4ef27] | 137 | output_shape[0] = (input_tensor->shape[0] - c->kernel_shape + 1) |
---|
[322e079] | 138 | / c->stride_shape; |
---|
| 139 | |
---|
| 140 | padding_start = 0; |
---|
| 141 | break; |
---|
| 142 | case PAD_CAUSAL: |
---|
| 143 | // TODO |
---|
| 144 | return AUBIO_FAIL; |
---|
| 145 | default: |
---|
| 146 | return AUBIO_FAIL; |
---|
| 147 | } |
---|
| 148 | |
---|
[6e4ef27] | 149 | uint_t kernel_shape[3]; |
---|
| 150 | kernel_shape[0] = c->kernel_shape; // filter length |
---|
| 151 | kernel_shape[1] = input_tensor->shape[1]; // channels |
---|
| 152 | kernel_shape[2] = c->n_filters; // outputs |
---|
[322e079] | 153 | |
---|
| 154 | if (c->kernel) del_aubio_tensor(c->kernel); |
---|
| 155 | if (c->bias) del_fvec(c->bias); |
---|
| 156 | |
---|
[6e4ef27] | 157 | c->kernel = new_aubio_tensor(3, kernel_shape); |
---|
[322e079] | 158 | if (!c->kernel) return AUBIO_FAIL; |
---|
| 159 | c->bias = new_fvec(c->n_filters); |
---|
| 160 | |
---|
| 161 | // set internals upon success |
---|
| 162 | c->output_shape[0] = output_shape[0]; |
---|
| 163 | c->output_shape[1] = output_shape[1]; |
---|
| 164 | |
---|
[3ffea61d] | 165 | #if defined(HAVE_BLAS) |
---|
| 166 | if (c->padded_input) del_aubio_tensor(c->padded_input); |
---|
| 167 | uint_t padded_shape[2] = {input_tensor->shape[0] + padding_shape, |
---|
| 168 | input_tensor->shape[1]}; |
---|
| 169 | c->padded_input = new_aubio_tensor(2, padded_shape); |
---|
| 170 | #endif |
---|
| 171 | |
---|
[322e079] | 172 | c->padding_start = padding_start; |
---|
| 173 | |
---|
| 174 | // set output |
---|
| 175 | shape[0] = output_shape[0]; |
---|
| 176 | shape[1] = output_shape[1]; |
---|
| 177 | |
---|
| 178 | aubio_conv1d_debug(c, input_tensor); |
---|
| 179 | |
---|
| 180 | return AUBIO_OK; |
---|
| 181 | } |
---|
| 182 | |
---|
| 183 | void aubio_conv1d_debug(aubio_conv1d_t *c, aubio_tensor_t *input_tensor) |
---|
| 184 | { |
---|
| 185 | // print some info |
---|
| 186 | AUBIO_ASSERT(c); |
---|
[6e4ef27] | 187 | uint_t n_params = (c->kernel->shape[0] * c->kernel->shape[2] + 1) |
---|
[52b0e42] | 188 | * c->kernel->shape[1]; |
---|
| 189 | AUBIO_DBG("conv1d: %15s -> (%d, %d) (%d params)" |
---|
| 190 | " (weigths=(%d, %d, %d), stride=(%d,), pad_start=(%d,))\n", |
---|
| 191 | aubio_tensor_get_shape_string(input_tensor), |
---|
[322e079] | 192 | c->output_shape[0], c->output_shape[1], |
---|
| 193 | n_params, |
---|
[52b0e42] | 194 | c->kernel->shape[0], c->kernel->shape[1], c->kernel->shape[2], |
---|
[322e079] | 195 | c->stride_shape, |
---|
| 196 | -c->padding_start); |
---|
| 197 | } |
---|
| 198 | |
---|
| 199 | uint_t aubio_conv1d_check_output_shape(aubio_conv1d_t *c, |
---|
| 200 | aubio_tensor_t *input_tensor, |
---|
| 201 | aubio_tensor_t *activations) |
---|
| 202 | { |
---|
| 203 | // fetch output_shape if it hasn't been done before |
---|
| 204 | if (c->output_shape[0] == 0 || |
---|
| 205 | c->output_shape[1] == 0) { |
---|
| 206 | if (!aubio_conv1d_get_output_shape(c, input_tensor, c->output_shape)) { |
---|
| 207 | return AUBIO_FAIL; |
---|
| 208 | } |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | // check we have as many filters as expected activation outputs |
---|
[6e4ef27] | 212 | if (activations->shape[1] != c->n_filters) return AUBIO_FAIL; |
---|
| 213 | if (activations->shape[1] != c->kernel->shape[2]) return AUBIO_FAIL; |
---|
| 214 | if (input_tensor->shape[1] != c->kernel->shape[1]) return AUBIO_FAIL; |
---|
[322e079] | 215 | |
---|
| 216 | // check tensor activations has the expected sizes |
---|
[6e4ef27] | 217 | if (c->output_shape[0] != activations->shape[0]) return AUBIO_FAIL; |
---|
| 218 | if (c->output_shape[1] != activations->shape[1]) return AUBIO_FAIL; |
---|
[322e079] | 219 | return AUBIO_OK; |
---|
| 220 | } |
---|
| 221 | |
---|
[3ffea61d] | 222 | #if !defined(HAVE_BLAS) |
---|
[322e079] | 223 | void aubio_conv1d_do(aubio_conv1d_t *c, aubio_tensor_t *input_tensor, |
---|
| 224 | aubio_tensor_t *activations) |
---|
| 225 | { |
---|
| 226 | uint_t i, j, k, a; |
---|
| 227 | uint_t stride_a, kk; |
---|
| 228 | sint_t x; |
---|
| 229 | smpl_t s, w, bias, acc; |
---|
| 230 | |
---|
| 231 | AUBIO_ASSERT(c && input_tensor && activations); |
---|
| 232 | // check we have the correct output activation sizes |
---|
| 233 | if (aubio_conv1d_check_output_shape(c, input_tensor, activations)) |
---|
| 234 | { |
---|
| 235 | AUBIO_ERR("conv1d: check_output_shape failed\n"); |
---|
| 236 | return; |
---|
| 237 | } |
---|
| 238 | |
---|
| 239 | // for each kernel filter k |
---|
[6e4ef27] | 240 | for (i = 0; i < activations->shape[1]; i++) { |
---|
[322e079] | 241 | // get bias |
---|
| 242 | bias = c->bias->data[i]; |
---|
[1aa6eb8] | 243 | stride_a = 0; // j * c->stride_shape |
---|
[322e079] | 244 | // for each output |
---|
[6e4ef27] | 245 | for (j = 0; j < activations->shape[0]; j++) { |
---|
[322e079] | 246 | // reset output |
---|
| 247 | acc = 0; |
---|
| 248 | // compute convolution for one kernel |
---|
| 249 | for (a = 0; a < c->kernel_shape; a++) { |
---|
| 250 | x = stride_a + a - c->padding_start; |
---|
[6e4ef27] | 251 | if ((x > -1) && (x < (sint_t)input_tensor->shape[0])) { |
---|
[322e079] | 252 | kk = 0; |
---|
| 253 | // for each input channel |
---|
[6e4ef27] | 254 | for (k = 0; k < input_tensor->shape[1]; k++) { |
---|
[322e079] | 255 | // get kernel weight |
---|
| 256 | w = c->kernel->data[a][kk + i]; |
---|
| 257 | // get input sample |
---|
| 258 | s = input_tensor->data[x][k]; |
---|
| 259 | acc += w * s; |
---|
[6e4ef27] | 260 | kk += c->kernel->shape[2]; |
---|
[322e079] | 261 | } |
---|
| 262 | } |
---|
| 263 | } |
---|
| 264 | stride_a += c->stride_shape; |
---|
| 265 | // apply bias |
---|
| 266 | acc += bias; |
---|
| 267 | } |
---|
| 268 | } |
---|
| 269 | } |
---|
| 270 | |
---|
[3ffea61d] | 271 | #else /* HAVE_BLAS */ |
---|
| 272 | |
---|
| 273 | // blas implementation |
---|
| 274 | // |
---|
[eba2bc7a] | 275 | // uses gemv on the padded input to compute each output elements at once |
---|
[3ffea61d] | 276 | // |
---|
| 277 | // TODO |
---|
| 278 | // - avoid copy when padding_start == 0 |
---|
| 279 | // - optimize copying using tensor helpers |
---|
| 280 | |
---|
| 281 | void aubio_conv1d_do(aubio_conv1d_t *c, aubio_tensor_t *input_tensor, |
---|
| 282 | aubio_tensor_t *activations) |
---|
| 283 | { |
---|
| 284 | uint_t i, j; |
---|
| 285 | |
---|
| 286 | uint_t sdot_size = c->kernel->shape[0] * c->kernel->shape[1]; |
---|
[eba2bc7a] | 287 | uint_t input_stride = c->stride_shape * c->padded_input->shape[1]; |
---|
[3ffea61d] | 288 | |
---|
| 289 | AUBIO_ASSERT(c && input_tensor && activations); |
---|
| 290 | if (aubio_conv1d_check_output_shape(c, input_tensor, activations)) |
---|
| 291 | { |
---|
| 292 | AUBIO_ERR("conv1d: check_output_shape failed\n"); |
---|
| 293 | return; |
---|
| 294 | } |
---|
| 295 | |
---|
| 296 | // copy input to padded version |
---|
| 297 | for (j = 0; j < input_tensor->shape[0]; j++) { |
---|
| 298 | for (i = 0; i < input_tensor->shape[1]; i++) { |
---|
| 299 | c->padded_input->data[j + c->padding_start][i] = |
---|
| 300 | input_tensor->data[j][i]; |
---|
| 301 | } |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | // for each output |
---|
| 305 | for (j = 0; j < activations->shape[0]; j++) { |
---|
[f217068] | 306 | // for each row of activation output |
---|
| 307 | aubio_cblas__gemv(CblasRowMajor, CblasTrans, |
---|
| 308 | sdot_size, c->kernel->shape[2], 1., |
---|
| 309 | c->kernel->buffer, c->kernel->shape[2], |
---|
| 310 | c->padded_input->buffer + j * input_stride, 1, 0., |
---|
| 311 | activations->buffer + j * activations->shape[1], 1); |
---|
| 312 | } |
---|
| 313 | for (j = 0; j < activations->shape[0]; j++) { |
---|
[3ffea61d] | 314 | // for each kernel filter k |
---|
| 315 | for (i = 0; i < activations->shape[1]; i++) { |
---|
[f217068] | 316 | activations->data[j][i] += c->bias->data[i]; |
---|
[3ffea61d] | 317 | } |
---|
| 318 | } |
---|
| 319 | } |
---|
| 320 | #endif /* HAVE_BLAS */ |
---|
| 321 | |
---|
[322e079] | 322 | uint_t aubio_conv1d_set_padding_mode(aubio_conv1d_t *c, |
---|
| 323 | const char_t *padding_mode) |
---|
| 324 | { |
---|
| 325 | AUBIO_ASSERT(c && padding_mode); |
---|
| 326 | if (strncmp(padding_mode, "same", PATH_MAX) == 0) { |
---|
| 327 | c->padding_mode = PAD_SAME; |
---|
| 328 | } else if (strncmp(padding_mode, "valid", PATH_MAX) == 0) { |
---|
| 329 | c->padding_mode = PAD_VALID; |
---|
| 330 | } else { |
---|
| 331 | return AUBIO_FAIL; |
---|
| 332 | } |
---|
| 333 | return AUBIO_OK; |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | aubio_tensor_t *aubio_conv1d_get_kernel(aubio_conv1d_t* c) |
---|
| 337 | { |
---|
| 338 | AUBIO_ASSERT(c && c->kernel); |
---|
| 339 | return c->kernel; |
---|
| 340 | } |
---|
| 341 | |
---|
| 342 | fvec_t *aubio_conv1d_get_bias(aubio_conv1d_t* c) |
---|
| 343 | { |
---|
| 344 | AUBIO_ASSERT(c && c->bias); |
---|
| 345 | return c->bias; |
---|
| 346 | } |
---|