[bacf0c6] | 1 | /* |
---|
| 2 | Copyright (C) 2018 Paul Brossier <piem@aubio.org> |
---|
| 3 | |
---|
| 4 | This file is part of aubio. |
---|
| 5 | |
---|
| 6 | aubio is free software: you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation, either version 3 of the License, or |
---|
| 9 | (at your option) any later version. |
---|
| 10 | |
---|
| 11 | aubio is distributed in the hope that it will be useful, |
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 14 | GNU General Public License for more details. |
---|
| 15 | |
---|
| 16 | You should have received a copy of the GNU General Public License |
---|
| 17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
| 18 | |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | |
---|
| 22 | #include "aubio_priv.h" |
---|
| 23 | #include "fmat.h" |
---|
| 24 | #include "tensor.h" |
---|
| 25 | #include "conv2d.h" |
---|
| 26 | |
---|
| 27 | typedef enum |
---|
| 28 | { |
---|
[3837125] | 29 | PAD_SAME = 0, // same, aka half mode |
---|
| 30 | PAD_VALID = 1 // valid, aka no padding |
---|
| 31 | } aubio_conv2d_padding_t; |
---|
[bacf0c6] | 32 | |
---|
| 33 | struct _aubio_conv2d_t { |
---|
| 34 | // define internals here |
---|
| 35 | uint_t n_filters; |
---|
| 36 | uint_t kernel_shape[2]; // kernel sizes |
---|
| 37 | uint_t stride_shape[2]; // stride sizes |
---|
| 38 | |
---|
[3837125] | 39 | aubio_conv2d_padding_t padding_mode; |
---|
[bacf0c6] | 40 | |
---|
| 41 | // these will be set after calling get_output_shape |
---|
| 42 | aubio_tensor_t *kernel; |
---|
| 43 | fvec_t *bias; |
---|
| 44 | uint_t output_shape[3]; // shape of output |
---|
| 45 | uint_t padding_start[2]; // {top, left} padding |
---|
[0d16cf9] | 46 | |
---|
| 47 | #if defined(HAVE_BLAS) |
---|
| 48 | aubio_tensor_t *padded_input; |
---|
| 49 | #endif |
---|
[bacf0c6] | 50 | }; |
---|
| 51 | |
---|
| 52 | static void aubio_conv2d_debug(aubio_conv2d_t *c, aubio_tensor_t *input_tensor); |
---|
| 53 | |
---|
| 54 | aubio_conv2d_t *new_aubio_conv2d(uint_t n_filters, uint_t *kernel_shape) |
---|
| 55 | { |
---|
| 56 | aubio_conv2d_t *c = AUBIO_NEW(aubio_conv2d_t); |
---|
| 57 | |
---|
| 58 | // validate input parameters |
---|
| 59 | AUBIO_GOTO_FAILURE((sint_t)n_filters >= 1); |
---|
| 60 | AUBIO_GOTO_FAILURE((sint_t)kernel_shape[0] >= 1); |
---|
| 61 | AUBIO_GOTO_FAILURE((sint_t)kernel_shape[1] >= 1); |
---|
| 62 | |
---|
| 63 | // set internal variables |
---|
| 64 | c->n_filters = n_filters; |
---|
| 65 | c->kernel_shape[0] = kernel_shape[0]; |
---|
| 66 | c->kernel_shape[1] = kernel_shape[1]; |
---|
| 67 | |
---|
| 68 | // default to padding_mode="valid" |
---|
| 69 | c->padding_mode = PAD_VALID; |
---|
| 70 | // set default stride_shape to {1, 1} |
---|
[b6097ac] | 71 | { |
---|
| 72 | uint_t default_stride[2] = {1, 1}; |
---|
| 73 | aubio_conv2d_set_stride(c, default_stride); |
---|
| 74 | } |
---|
[bacf0c6] | 75 | |
---|
| 76 | return c; |
---|
| 77 | |
---|
| 78 | failure: |
---|
| 79 | del_aubio_conv2d(c); |
---|
| 80 | return NULL; |
---|
| 81 | } |
---|
| 82 | |
---|
| 83 | void del_aubio_conv2d(aubio_conv2d_t *c) |
---|
| 84 | { |
---|
| 85 | AUBIO_ASSERT(c); |
---|
[49ac607f] | 86 | if (c->kernel) |
---|
[bacf0c6] | 87 | del_aubio_tensor(c->kernel); |
---|
| 88 | if (c->bias) |
---|
| 89 | del_fvec(c->bias); |
---|
[0d16cf9] | 90 | #if defined(HAVE_BLAS) |
---|
| 91 | if (c->padded_input) |
---|
| 92 | del_aubio_tensor(c->padded_input); |
---|
| 93 | #endif |
---|
[bacf0c6] | 94 | AUBIO_FREE(c); |
---|
| 95 | } |
---|
| 96 | |
---|
| 97 | |
---|
| 98 | uint_t aubio_conv2d_set_stride(aubio_conv2d_t *c, |
---|
[b6097ac] | 99 | uint_t stride[2]) |
---|
[bacf0c6] | 100 | { |
---|
[b6097ac] | 101 | if ((sint_t)stride[0] < 1) return AUBIO_FAIL; |
---|
| 102 | if ((sint_t)stride[1] < 1) return AUBIO_FAIL; |
---|
| 103 | c->stride_shape[0] = stride[0]; |
---|
| 104 | c->stride_shape[1] = stride[1]; |
---|
[bacf0c6] | 105 | return AUBIO_OK; |
---|
| 106 | } |
---|
| 107 | |
---|
| 108 | uint_t *aubio_conv2d_get_stride(aubio_conv2d_t *c) |
---|
| 109 | { |
---|
| 110 | return c->stride_shape; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | uint_t aubio_conv2d_get_output_shape(aubio_conv2d_t *c, |
---|
| 114 | aubio_tensor_t *input_tensor, |
---|
| 115 | uint_t *shape) |
---|
| 116 | { |
---|
| 117 | uint_t output_shape[3] = {0, 0, c->n_filters}; |
---|
| 118 | uint_t padding_start[2] = {0, 0}; |
---|
[0d16cf9] | 119 | // total amount of padding |
---|
| 120 | uint_t padding_shape[2] = {0, 0}; |
---|
[bacf0c6] | 121 | |
---|
| 122 | // check input parameters |
---|
| 123 | AUBIO_ASSERT(input_tensor); |
---|
| 124 | AUBIO_ASSERT(shape); |
---|
| 125 | |
---|
| 126 | // reset output array |
---|
| 127 | shape[0] = 0; |
---|
| 128 | shape[1] = 0; |
---|
| 129 | shape[2] = 0; |
---|
| 130 | |
---|
| 131 | switch (c->padding_mode) { |
---|
| 132 | case PAD_SAME: |
---|
| 133 | // compute output shape |
---|
| 134 | output_shape[0] = (uint_t)CEIL(input_tensor->shape[0] |
---|
| 135 | / (smpl_t)c->stride_shape[0]); |
---|
| 136 | output_shape[1] = (uint_t)CEIL(input_tensor->shape[1] |
---|
| 137 | / (smpl_t)c->stride_shape[1]); |
---|
| 138 | |
---|
| 139 | padding_shape[0] = (output_shape[0] - 1) * c->stride_shape[0] |
---|
| 140 | + c->kernel_shape[0] - input_tensor->shape[0]; |
---|
| 141 | padding_shape[1] = (output_shape[1] - 1) * c->stride_shape[1] |
---|
| 142 | + c->kernel_shape[1] - input_tensor->shape[1]; |
---|
| 143 | |
---|
| 144 | padding_start[0] = FLOOR(padding_shape[0] / 2); |
---|
| 145 | padding_start[1] = FLOOR(padding_shape[1] / 2); |
---|
| 146 | |
---|
| 147 | break; |
---|
| 148 | case PAD_VALID: |
---|
| 149 | output_shape[0] = (input_tensor->shape[0] - c->kernel_shape[0] + 1) |
---|
| 150 | / c->stride_shape[0]; |
---|
| 151 | output_shape[1] = (input_tensor->shape[1] - c->kernel_shape[1] + 1) |
---|
| 152 | / c->stride_shape[1]; |
---|
| 153 | |
---|
| 154 | padding_start[0] = 0; |
---|
| 155 | padding_start[1] = 0; |
---|
[49ac607f] | 156 | |
---|
[bacf0c6] | 157 | break; |
---|
| 158 | //case PAD_CAUSAL: |
---|
| 159 | // // TODO |
---|
| 160 | // return AUBIO_FAIL; |
---|
| 161 | default: |
---|
| 162 | return AUBIO_FAIL; |
---|
| 163 | } |
---|
| 164 | |
---|
| 165 | uint_t kernel_shape[4]; |
---|
| 166 | kernel_shape[0] = c->kernel_shape[0]; |
---|
| 167 | kernel_shape[1] = c->kernel_shape[1]; |
---|
| 168 | kernel_shape[2] = input_tensor->shape[2]; |
---|
| 169 | kernel_shape[3] = c->n_filters; |
---|
| 170 | |
---|
| 171 | if (c->kernel) del_aubio_tensor(c->kernel); |
---|
| 172 | if (c->bias) del_fvec(c->bias); |
---|
| 173 | |
---|
| 174 | c->kernel = new_aubio_tensor(4, kernel_shape); |
---|
| 175 | if (!c->kernel) return AUBIO_FAIL; |
---|
| 176 | c->bias = new_fvec(c->n_filters); |
---|
| 177 | |
---|
| 178 | // set internals upon success |
---|
| 179 | c->output_shape[0] = output_shape[0]; |
---|
| 180 | c->output_shape[1] = output_shape[1]; |
---|
| 181 | c->output_shape[2] = output_shape[2]; |
---|
| 182 | |
---|
| 183 | c->padding_start[0] = padding_start[0]; |
---|
| 184 | c->padding_start[1] = padding_start[1]; |
---|
| 185 | |
---|
| 186 | // set output |
---|
| 187 | shape[0] = output_shape[0]; |
---|
| 188 | shape[1] = output_shape[1]; |
---|
| 189 | shape[2] = output_shape[2]; |
---|
| 190 | |
---|
[0d16cf9] | 191 | |
---|
| 192 | #if defined(HAVE_BLAS) |
---|
| 193 | // im2col padding |
---|
| 194 | padding_shape[0] = output_shape[0] * output_shape[1]; |
---|
| 195 | padding_shape[1] = c->kernel_shape[0] * c->kernel_shape[1] |
---|
| 196 | * input_tensor->shape[2]; |
---|
| 197 | c->padded_input = new_aubio_tensor(2, padding_shape); |
---|
| 198 | if (!c-> padded_input) { |
---|
| 199 | AUBIO_MSG("conv2d: failed creating padded_input with shape (%d, %d, %d)\n", |
---|
| 200 | padding_shape); |
---|
| 201 | return AUBIO_FAIL; |
---|
| 202 | } |
---|
| 203 | #endif |
---|
| 204 | |
---|
[bacf0c6] | 205 | aubio_conv2d_debug(c, input_tensor); |
---|
| 206 | |
---|
| 207 | return AUBIO_OK; |
---|
| 208 | } |
---|
| 209 | |
---|
| 210 | void aubio_conv2d_debug(aubio_conv2d_t *c, aubio_tensor_t *input_tensor) |
---|
| 211 | { |
---|
| 212 | // print some info |
---|
| 213 | AUBIO_ASSERT(c); |
---|
| 214 | uint_t n_params = (c->kernel->shape[0] * c->kernel->shape[2] + 1) |
---|
| 215 | * c->kernel->shape[1] * c->kernel->shape[3]; |
---|
| 216 | |
---|
[49ac607f] | 217 | const char_t *tensor_str = aubio_tensor_get_shape_string(input_tensor); |
---|
| 218 | //AUBIO_DBG("conv2d: kernel_shape_str %s\n", kernel_shape_str); |
---|
| 219 | AUBIO_DBG("conv2d: %15s -> (%d, %d, %d)", |
---|
| 220 | tensor_str, |
---|
| 221 | c->output_shape[0], c->output_shape[1], c->output_shape[2]); |
---|
| 222 | tensor_str = aubio_tensor_get_shape_string(c->kernel); |
---|
| 223 | AUBIO_DBG(" (n_params=%d, kernel_shape=(%d, %d)," |
---|
[1cbd27c] | 224 | " weigths=%s, stride (%d, %d), pad_start [%d, %d])\n", |
---|
[49ac607f] | 225 | n_params, c->kernel_shape[0], c->kernel_shape[1], |
---|
| 226 | tensor_str, |
---|
[bacf0c6] | 227 | c->stride_shape[0], c->stride_shape[1], |
---|
| 228 | -c->padding_start[0], -c->padding_start[1]); |
---|
| 229 | } |
---|
| 230 | |
---|
| 231 | uint_t aubio_conv2d_check_output_shape(aubio_conv2d_t *c, |
---|
| 232 | aubio_tensor_t *input_tensor, |
---|
| 233 | aubio_tensor_t *activations) |
---|
| 234 | { |
---|
| 235 | // fetch output_shape if it hasn't been done before |
---|
| 236 | if (c->output_shape[0] == 0 || |
---|
| 237 | c->output_shape[1] == 0 || |
---|
| 238 | c->output_shape[2] == 0) { |
---|
| 239 | if (!aubio_conv2d_get_output_shape(c, input_tensor, c->output_shape)) { |
---|
| 240 | return AUBIO_FAIL; |
---|
| 241 | } |
---|
| 242 | } |
---|
| 243 | |
---|
| 244 | // check we have as many filters as expected activation outputs |
---|
| 245 | if (activations->shape[2] != c->n_filters) return AUBIO_FAIL; |
---|
| 246 | if (activations->shape[2] != c->kernel->shape[3]) return AUBIO_FAIL; |
---|
| 247 | if (input_tensor->shape[2] != c->kernel->shape[2]) return AUBIO_FAIL; |
---|
| 248 | |
---|
| 249 | // check tensor activations has the expected sizes |
---|
| 250 | if (c->output_shape[0] != activations->shape[0]) return AUBIO_FAIL; |
---|
| 251 | if (c->output_shape[1] != activations->shape[1]) return AUBIO_FAIL; |
---|
| 252 | if (c->output_shape[2] != activations->shape[2]) return AUBIO_FAIL; |
---|
| 253 | return AUBIO_OK; |
---|
| 254 | } |
---|
| 255 | |
---|
[0d16cf9] | 256 | #if !defined(HAVE_BLAS) |
---|
[bacf0c6] | 257 | void aubio_conv2d_do(aubio_conv2d_t *c, aubio_tensor_t *input_tensor, |
---|
| 258 | aubio_tensor_t *activations) |
---|
| 259 | { |
---|
| 260 | uint_t i, j, k, l, a, b; |
---|
| 261 | uint_t stride_a, stride_b; |
---|
| 262 | sint_t x, y; |
---|
| 263 | smpl_t s, w, bias, acc; |
---|
| 264 | uint_t jj, ll, bb, yy; |
---|
| 265 | |
---|
| 266 | uint_t k_stride1 = c->kernel->shape[3]; |
---|
| 267 | uint_t k_stride2 = c->kernel->shape[2] * k_stride1; |
---|
| 268 | |
---|
| 269 | AUBIO_ASSERT(c && input_tensor && activations); |
---|
| 270 | // check we have the correct output activation sizes |
---|
| 271 | if (aubio_conv2d_check_output_shape(c, input_tensor, activations)) |
---|
| 272 | { |
---|
| 273 | AUBIO_ERR("conv2d: check_output_shape failed\n"); |
---|
| 274 | return; |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | // for each kernel filter k |
---|
| 278 | for (i = 0; i < activations->shape[2]; i++) { |
---|
| 279 | // get bias |
---|
| 280 | bias = c->bias->data[i]; |
---|
| 281 | stride_b = 0; // == j * c->stride_shape[1] |
---|
| 282 | jj = 0; // == j * activations->shape[2] |
---|
| 283 | // for each output y |
---|
| 284 | for (j = 0; j < activations->shape[1]; j++) { |
---|
| 285 | // for each output x |
---|
| 286 | stride_a = 0; // k * c->stride_shape[0] |
---|
| 287 | for (k = 0; k < activations->shape[0]; k++) { |
---|
| 288 | // reset output |
---|
| 289 | acc = 0; |
---|
| 290 | // compute convolution for one kernel |
---|
| 291 | for (a = 0; a < c->kernel_shape[0]; a++) { |
---|
| 292 | x = stride_a + a - c->padding_start[0]; |
---|
| 293 | if ((x < 0) || (x > (sint_t)input_tensor->shape[0] - 1)) |
---|
| 294 | continue; // padding with 0. |
---|
| 295 | bb = 0; // == b * k_stride2 |
---|
| 296 | for (b = 0; b < c->kernel_shape[1]; b++) { |
---|
| 297 | y = stride_b + b - c->padding_start[1]; |
---|
| 298 | if ((y < 0) || (y > (sint_t)input_tensor->shape[1] - 1)) |
---|
| 299 | continue; // padding with 0. |
---|
| 300 | yy = y * input_tensor->shape[2]; |
---|
| 301 | ll = bb + i; // + l * k_stride1 |
---|
| 302 | // for each input channel |
---|
| 303 | for (l = 0; l < input_tensor->shape[2]; l++) { |
---|
| 304 | // get kernel weight |
---|
| 305 | w = c->kernel->data[a][ll]; |
---|
| 306 | // get input sample |
---|
| 307 | s = input_tensor->data[x][yy + l]; |
---|
| 308 | acc += w * s; |
---|
| 309 | ll += k_stride1; |
---|
| 310 | } |
---|
| 311 | bb += k_stride2; |
---|
| 312 | } |
---|
| 313 | } |
---|
| 314 | stride_a += c->stride_shape[0]; |
---|
| 315 | // apply bias |
---|
| 316 | acc += bias; |
---|
[b2e2cd0] | 317 | // set output activation |
---|
| 318 | activations->data[k][jj + i] = acc; |
---|
[bacf0c6] | 319 | } |
---|
| 320 | stride_b += c->stride_shape[1]; |
---|
| 321 | jj += activations->shape[2]; |
---|
| 322 | } |
---|
| 323 | } |
---|
| 324 | } |
---|
| 325 | |
---|
[0d16cf9] | 326 | #else /* HAVE_BLAS */ |
---|
| 327 | |
---|
| 328 | void aubio_conv2d_copy_to_padded(aubio_conv2d_t *o, |
---|
| 329 | aubio_tensor_t *input_tensor, aubio_tensor_t *padded_input) |
---|
| 330 | { |
---|
| 331 | // naive implementation of im2col |
---|
| 332 | uint_t i, j, k, l, m; |
---|
| 333 | uint_t stride_4 = o->kernel->shape[2]; |
---|
| 334 | uint_t stride_3 = o->kernel->shape[1] * stride_4; |
---|
| 335 | uint_t stride_2 = o->kernel->shape[0] * stride_3; |
---|
| 336 | uint_t stride_1 = o->output_shape[1] * stride_2; |
---|
| 337 | uint_t stride_in_2 = input_tensor->shape[2]; |
---|
| 338 | uint_t stride_in_1 = input_tensor->shape[1] * stride_in_2; |
---|
| 339 | |
---|
| 340 | AUBIO_ASSERT(padded_input->size == |
---|
| 341 | o->output_shape[0] * o->output_shape[1] |
---|
| 342 | * o->kernel_shape[0] * o->kernel_shape[1] |
---|
| 343 | * input_tensor->shape[2]); |
---|
| 344 | AUBIO_ASSERT(input_tensor->shape[2] == o->kernel->shape[2]); |
---|
| 345 | |
---|
| 346 | for (i = 0; i < o->output_shape[0]; i++) |
---|
| 347 | { |
---|
| 348 | for (j = 0; j < o->output_shape[1]; j++) |
---|
| 349 | { |
---|
| 350 | for (k = 0; k < o->kernel->shape[0]; k++) |
---|
| 351 | { |
---|
| 352 | for (l = 0; l < o->kernel->shape[1]; l++) |
---|
| 353 | { |
---|
| 354 | for (m = 0; m < o->kernel->shape[2]; m++) |
---|
| 355 | { |
---|
| 356 | uint_t read_i = i * o->stride_shape[0] + k; |
---|
| 357 | uint_t read_j = j * o->stride_shape[1] + l; |
---|
| 358 | if (read_i < o->padding_start[0]) |
---|
| 359 | continue; |
---|
| 360 | else if (read_i - o->padding_start[0] >= input_tensor->shape[0]) |
---|
| 361 | continue; |
---|
| 362 | if (read_j < o->padding_start[1]) |
---|
| 363 | continue; |
---|
| 364 | else if (read_j - o->padding_start[1] >= input_tensor->shape[1]) |
---|
| 365 | continue; |
---|
| 366 | |
---|
| 367 | sint_t idx = |
---|
| 368 | ((read_i - o->padding_start[0])) * stride_in_1 |
---|
| 369 | + ((read_j - o->padding_start[1])) * stride_in_2 |
---|
| 370 | + m; |
---|
| 371 | padded_input->buffer[i * stride_1 |
---|
| 372 | + j * stride_2 |
---|
| 373 | + k * stride_3 |
---|
| 374 | + l * stride_4 |
---|
| 375 | + m] |
---|
| 376 | = input_tensor->buffer[idx]; |
---|
| 377 | } |
---|
| 378 | } |
---|
| 379 | } |
---|
| 380 | } |
---|
| 381 | } |
---|
| 382 | } |
---|
| 383 | |
---|
| 384 | void aubio_conv2d_do(aubio_conv2d_t *o, aubio_tensor_t *input_tensor, |
---|
| 385 | aubio_tensor_t *activations) |
---|
| 386 | { |
---|
| 387 | uint_t i, j; |
---|
| 388 | smpl_t bias; |
---|
| 389 | aubio_tensor_t *padded_input = o->padded_input; |
---|
| 390 | aubio_tensor_t *kernel = o->kernel; |
---|
| 391 | |
---|
| 392 | AUBIO_ASSERT(o && input_tensor && activations); |
---|
| 393 | // check we have the correct output activation sizes |
---|
| 394 | if (aubio_conv2d_check_output_shape(o, input_tensor, activations)) |
---|
| 395 | { |
---|
| 396 | AUBIO_ERR("conv2d: check_output_shape failed\n"); |
---|
| 397 | return; |
---|
| 398 | } |
---|
| 399 | |
---|
| 400 | uint_t M = padded_input->shape[0]; |
---|
| 401 | uint_t K = padded_input->size/padded_input->shape[0]; |
---|
| 402 | uint_t N = kernel->size / K; |
---|
| 403 | |
---|
| 404 | // check sizes |
---|
| 405 | AUBIO_ASSERT(M * K == padded_input->size); |
---|
| 406 | AUBIO_ASSERT(N * K == kernel->size); |
---|
| 407 | AUBIO_ASSERT(M * N == activations->size); |
---|
| 408 | |
---|
| 409 | // copy input to im2col sliding window version |
---|
| 410 | aubio_conv2d_copy_to_padded(o, input_tensor, padded_input); |
---|
| 411 | |
---|
| 412 | aubio_cblas__gemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, |
---|
| 413 | M, // M |
---|
| 414 | N, // N |
---|
| 415 | K, // K |
---|
| 416 | 1.F, // alpha |
---|
| 417 | padded_input->buffer, // M x K matrix |
---|
| 418 | K, // K (2nd dim of A) |
---|
| 419 | kernel->buffer, // K x N matrix |
---|
| 420 | N, // N |
---|
| 421 | 0.F, // beta |
---|
| 422 | activations->buffer, // M x N matrix |
---|
| 423 | N); // N (2nd dim of C) |
---|
| 424 | |
---|
| 425 | |
---|
| 426 | // apply bias |
---|
| 427 | for (i = 0; i < activations->shape[2]; i++) { |
---|
| 428 | bias = o->bias->data[i]; |
---|
| 429 | for (j = 0; j < activations->shape[0] * activations->shape[1]; j++) |
---|
| 430 | { |
---|
| 431 | activations->buffer[j * activations->shape[2] + i] += bias; |
---|
| 432 | } |
---|
| 433 | } |
---|
| 434 | } |
---|
| 435 | #endif |
---|
| 436 | |
---|
[bacf0c6] | 437 | void aubio_conv2d_do_backwards(aubio_conv2d_t *c, |
---|
| 438 | /*aubio_tensor_t *old_gradients,*/ |
---|
| 439 | aubio_tensor_t *gradients) |
---|
| 440 | { |
---|
| 441 | uint_t i, j, k, a, b; |
---|
| 442 | AUBIO_ASSERT(c && gradients); |
---|
| 443 | // TODO |
---|
| 444 | // for each kernel filter k |
---|
| 445 | for (i = 0; i < c->n_filters; i++) { |
---|
| 446 | // for each input column |
---|
| 447 | for (j = 0; j < gradients->shape[1]; j++) { |
---|
| 448 | // for each input row |
---|
| 449 | for (k = 0; k < gradients->shape[2]; k++) { |
---|
| 450 | for (a = 0; a < c->kernel_shape[0]; a++) { |
---|
| 451 | for (b = 0; b < c->kernel_shape[1]; b++) { |
---|
| 452 | #if 0 |
---|
| 453 | smpl_t grad = gradients->data[i]->data[a][b]; |
---|
| 454 | smpl_t oldgrad = old_gradients->data[i]->data[a][b]; |
---|
| 455 | smpl_t m = (grad - oldgrad * momentum); |
---|
| 456 | w -= lr * m - lr * decay * w; |
---|
| 457 | #endif |
---|
| 458 | } |
---|
| 459 | } |
---|
| 460 | } |
---|
| 461 | } |
---|
| 462 | } |
---|
| 463 | } |
---|
| 464 | |
---|
| 465 | uint_t aubio_conv2d_set_padding_mode(aubio_conv2d_t *c, |
---|
| 466 | const char_t *padding_mode) |
---|
| 467 | { |
---|
| 468 | AUBIO_ASSERT(c && padding_mode); |
---|
| 469 | if (strncmp(padding_mode, "same", PATH_MAX) == 0) { |
---|
| 470 | c->padding_mode = PAD_SAME; |
---|
| 471 | } else if (strncmp(padding_mode, "valid", PATH_MAX) == 0) { |
---|
| 472 | c->padding_mode = PAD_VALID; |
---|
| 473 | } else { |
---|
| 474 | return AUBIO_FAIL; |
---|
| 475 | } |
---|
| 476 | return AUBIO_OK; |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | uint_t aubio_conv2d_set_kernel(aubio_conv2d_t *c, aubio_tensor_t *kernel) |
---|
| 480 | { |
---|
| 481 | uint_t i; |
---|
| 482 | AUBIO_ASSERT(c && kernel); |
---|
| 483 | for (i = 0; i < c->kernel->ndim; i++) { |
---|
| 484 | AUBIO_ASSERT(c->kernel->shape[i] == kernel->shape[i]); |
---|
| 485 | } |
---|
| 486 | return AUBIO_OK; |
---|
| 487 | } |
---|
| 488 | |
---|
| 489 | aubio_tensor_t *aubio_conv2d_get_kernel(aubio_conv2d_t* c) |
---|
| 490 | { |
---|
| 491 | AUBIO_ASSERT(c && c->kernel); |
---|
| 492 | return c->kernel; |
---|
| 493 | } |
---|
| 494 | |
---|
| 495 | uint_t aubio_conv2d_set_bias(aubio_conv2d_t *c, fvec_t *bias) |
---|
| 496 | { |
---|
| 497 | AUBIO_ASSERT(c && bias); |
---|
| 498 | AUBIO_ASSERT(c->kernel_shape[1] == bias->length); |
---|
| 499 | return AUBIO_OK; |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | fvec_t *aubio_conv2d_get_bias(aubio_conv2d_t* c) |
---|
| 503 | { |
---|
| 504 | AUBIO_ASSERT(c && c->bias); |
---|
| 505 | return c->bias; |
---|
| 506 | } |
---|