/* Copyright (C) 2007 Amaury Hazan and Paul Brossier This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "aubio_priv.h" #include "sample.h" #include "filterbank.h" #include "stdio.h" #define USE_EQUAL_GAIN 1 #define VERY_SMALL_NUMBER 2e-42 /** \brief A structure to store a set of n_filters filters of lenghts win_s */ struct aubio_filterbank_t_ { uint_t win_s; uint_t n_filters; fvec_t **filters; }; aubio_filterbank_t * new_aubio_filterbank(uint_t n_filters, uint_t win_s){ /** allocating space for filterbank object */ aubio_filterbank_t * fb = AUBIO_NEW(aubio_filterbank_t); uint_t filter_cnt; fb->win_s=win_s; fb->n_filters=n_filters; /** allocating filter tables */ fb->filters=AUBIO_ARRAY(fvec_t*,n_filters); for (filter_cnt=0; filter_cntfilters[filter_cnt]=new_fvec(win_s, 1); return fb; } aubio_filterbank_t * new_aubio_filterbank_mfcc(uint_t n_filters, uint_t win_s, uint_t samplerate, smpl_t freq_min, smpl_t freq_max){ smpl_t nyquist = samplerate/2.; uint_t style = 1; aubio_filterbank_t * fb = new_aubio_filterbank(n_filters, win_s); uint_t n, i, k, *fft_peak, M, next_peak; smpl_t norm, mel_freq_max, mel_freq_min, norm_fact, height, inc, val, freq_bw_mel, *mel_peak, *height_norm, *lin_peak; mel_peak = height_norm = lin_peak = NULL; fft_peak = NULL; norm = 1; mel_freq_max = 1127 * log(1 + freq_max / 700); mel_freq_min = 1127 * log(1 + freq_min / 700); freq_bw_mel = (mel_freq_max - mel_freq_min) / fb->n_filters; mel_peak = (smpl_t *)malloc((fb->n_filters + 2) * sizeof(smpl_t)); /* +2 for zeros at start and end */ lin_peak = (smpl_t *)malloc((fb->n_filters + 2) * sizeof(smpl_t)); fft_peak = (uint_t *)malloc((fb->n_filters + 2) * sizeof(uint_t)); height_norm = (smpl_t *)malloc(fb->n_filters * sizeof(smpl_t)); if(mel_peak == NULL || height_norm == NULL || lin_peak == NULL || fft_peak == NULL) return NULL; M = fb->win_s >> 1; mel_peak[0] = mel_freq_min; lin_peak[0] = 700 * (exp(mel_peak[0] / 1127) - 1); fft_peak[0] = lin_peak[0] / nyquist * M; for (n = 1; n <= fb->n_filters; n++){ /*roll out peak locations - mel, linear and linear on fft window scale */ mel_peak[n] = mel_peak[n - 1] + freq_bw_mel; lin_peak[n] = 700 * (exp(mel_peak[n] / 1127) -1); fft_peak[n] = lin_peak[n] / nyquist * M; } for (n = 0; n < fb->n_filters; n++){ /*roll out normalised gain of each peak*/ if (style == USE_EQUAL_GAIN){ height = 1; norm_fact = norm; } else{ height = 2 / (lin_peak[n + 2] - lin_peak[n]); norm_fact = norm / (2 / (lin_peak[2] - lin_peak[0])); } height_norm[n] = height * norm_fact; } i = 0; for(n = 0; n < fb->n_filters; n++){ /*calculate the rise increment*/ if(n > 0) inc = height_norm[n] / (fft_peak[n] - fft_peak[n - 1]); else inc = height_norm[n] / fft_peak[n]; val = 0; /*zero the start of the array*/ for(k = 0; k < i; k++) fb->filters[n]->data[0][k]=0.f; /*fill in the rise */ for(; i <= fft_peak[n]; i++){ fb->filters[n]->data[0][k]=val; val += inc; } /*calculate the fall increment */ inc = height_norm[n] / (fft_peak[n + 1] - fft_peak[n]); val = 0; next_peak = fft_peak[n + 1]; /*reverse fill the 'fall' */ for(i = next_peak; i > fft_peak[n]; i--){ fb->filters[n]->data[0][k]=val; val += inc; } /*zero the rest of the array*/ for(k = next_peak + 1; k < fb->win_s; k++) fb->filters[n]->data[0][k]=0.f; } free(mel_peak); free(lin_peak); free(height_norm); free(fft_peak); return fb; } /* FB initialization based on Slaney's auditory toolbox TODO: *solve memory leak problems while *solve quantization issues when constructing signal: *bug for win_s=512 *corrections for win_s=1024 -> why even filters with smaller amplitude */ aubio_filterbank_t * new_aubio_filterbank_mfcc2(uint_t n_filters, uint_t win_s, uint_t samplerate, smpl_t freq_min, smpl_t freq_max){ aubio_filterbank_t * fb = new_aubio_filterbank(n_filters, win_s); //slaney params smpl_t lowestFrequency = 133.3333; smpl_t linearSpacing = 66.66666666; smpl_t logSpacing = 1.0711703; uint_t linearFilters = 13; uint_t logFilters = 27; uint_t allFilters = linearFilters + logFilters; //buffers for computing filter frequencies fvec_t * freqs=new_fvec(allFilters+2 , 1); fvec_t * lower_freqs=new_fvec( allFilters, 1); fvec_t * upper_freqs=new_fvec( allFilters, 1); fvec_t * center_freqs=new_fvec( allFilters, 1); fvec_t * triangle_heights=new_fvec( allFilters, 1); //lookup table of each bin frequency in hz fvec_t * fft_freqs=new_fvec(win_s, 1); uint_t filter_cnt, bin_cnt; //first step: filling all the linear filter frequencies for(filter_cnt=0; filter_cntdata[0][filter_cnt]=lowestFrequency+ filter_cnt*linearSpacing; } smpl_t lastlinearCF=freqs->data[0][filter_cnt-1]; //second step: filling all the log filter frequencies for(filter_cnt=0; filter_cntdata[0][filter_cnt+linearFilters]=lastlinearCF*(pow(logSpacing,filter_cnt+1)); } //Option 1. copying interesting values to lower_freqs, center_freqs and upper freqs arrays //TODO: would be nicer to have a reference to freqs->data, anyway we do not care in this init step for(filter_cnt=0; filter_cntdata[0][filter_cnt]=freqs->data[0][filter_cnt]; center_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt+1]; upper_freqs->data[0][filter_cnt]=freqs->data[0][filter_cnt+2]; } //computing triangle heights so that each triangle has unit area for(filter_cnt=0; filter_cntdata[0][filter_cnt]=2./(upper_freqs->data[0][filter_cnt]-lower_freqs->data[0][filter_cnt]); } //AUBIO_DBG AUBIO_DBG("filter tables frequencies\n"); for(filter_cnt=0; filter_cntdata[0][filter_cnt], center_freqs->data[0][filter_cnt], upper_freqs->data[0][filter_cnt], triangle_heights->data[0][filter_cnt]); //filling the fft_freqs lookup table, which assigns the frequency in hz to each bin for(bin_cnt=0; bin_cntdata[0][bin_cnt]= (smpl_t)samplerate* (smpl_t)bin_cnt/ (smpl_t)win_s; } //building each filter table for(filter_cnt=0; filter_cntdata[0][filter_cnt]/(center_freqs->data[0][filter_cnt]-lower_freqs->data[0][filter_cnt]); AUBIO_DBG("\nfilter %d",filter_cnt); //zeroing begining of filter AUBIO_DBG("\nzero begin\n"); for(bin_cnt=0; bin_cntfilters[filter_cnt]->data[0][bin_cnt]=0.f; AUBIO_DBG("."); //AUBIO_DBG("%f %f %f\n", fft_freqs->data[0][bin_cnt], fft_freqs->data[0][bin_cnt+1], lower_freqs->data[0][filter_cnt]); if(fft_freqs->data[0][bin_cnt]<= lower_freqs->data[0][filter_cnt] && fft_freqs->data[0][bin_cnt+1]> lower_freqs->data[0][filter_cnt]){ break; } } bin_cnt++; AUBIO_DBG("\npos slope\n"); //positive slope for(; bin_cntfilters[filter_cnt]->data[0][bin_cnt]=(fft_freqs->data[0][bin_cnt]-lower_freqs->data[0][filter_cnt])*riseInc; //if(fft_freqs->data[0][bin_cnt]<= center_freqs->data[0][filter_cnt] && fft_freqs->data[0][bin_cnt+1]> center_freqs->data[0][filter_cnt]) if(fft_freqs->data[0][bin_cnt+1]> center_freqs->data[0][filter_cnt]) break; } //bin_cnt++; //negative slope AUBIO_DBG("\nneg slope\n"); for(; bin_cntdata[0][filter_cnt]-(fft_freqs->data[0][bin_cnt]-center_freqs->data[0][filter_cnt])*riseInc; if(val>=0) fb->filters[filter_cnt]->data[0][bin_cnt]=val; else fb->filters[filter_cnt]->data[0][bin_cnt]=0.f; //if(fft_freqs->data[0][bin_cnt]<= upper_freqs->data[0][bin_cnt] && fft_freqs->data[0][bin_cnt+1]> upper_freqs->data[0][filter_cnt]) //TODO: CHECK whether bugfix correct if(fft_freqs->data[0][bin_cnt+1]> upper_freqs->data[0][filter_cnt]) break; } //bin_cnt++; AUBIO_DBG("\nzero end\n"); //zeroing tail for(; bin_cntfilters[filter_cnt]->data[0][bin_cnt]=0.f; } del_fvec(freqs); del_fvec(lower_freqs); del_fvec(upper_freqs); del_fvec(center_freqs); del_fvec(triangle_heights); del_fvec(fft_freqs); return fb; } void aubio_dump_filterbank(aubio_filterbank_t * fb){ FILE * mlog; mlog=fopen("filterbank.txt","w"); int k,n; //dumping filter values //smpl_t area_tmp=0.f; for(n = 0; n < fb->n_filters; n++){ for(k = 0; k < fb->win_s; k++){ fprintf(mlog,"%f ",fb->filters[n]->data[0][k]); } fprintf(mlog,"\n"); } if(mlog) fclose(mlog); } void del_aubio_filterbank(aubio_filterbank_t * fb){ uint_t filter_cnt; /** deleting filter tables first */ for (filter_cnt=0; filter_cntn_filters; filter_cnt++) del_fvec(fb->filters[filter_cnt]); AUBIO_FREE(fb->filters); AUBIO_FREE(fb); } void aubio_filterbank_do(aubio_filterbank_t * f, cvec_t * in, fvec_t *out) { uint_t n, filter_cnt; for(filter_cnt = 0; (filter_cnt < f->n_filters) && (filter_cnt < out->length); filter_cnt++){ out->data[0][filter_cnt] = 0.f; for(n = 0; n < in->length; n++){ out->data[0][filter_cnt] += in->norm[0][n] * f->filters[filter_cnt]->data[0][n]; } out->data[0][filter_cnt] = LOG(out->data[0][filter_cnt] < VERY_SMALL_NUMBER ? VERY_SMALL_NUMBER : out->data[0][filter_cnt]); } return; }