1 | /* |
---|
2 | Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org> |
---|
3 | |
---|
4 | This file is part of aubio. |
---|
5 | |
---|
6 | aubio is free software: you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation, either version 3 of the License, or |
---|
9 | (at your option) any later version. |
---|
10 | |
---|
11 | aubio is distributed in the hope that it will be useful, |
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
14 | GNU General Public License for more details. |
---|
15 | |
---|
16 | You should have received a copy of the GNU General Public License |
---|
17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
18 | |
---|
19 | */ |
---|
20 | |
---|
21 | /* see in mathutils.h for doc */ |
---|
22 | |
---|
23 | #include "aubio_priv.h" |
---|
24 | #include "fvec.h" |
---|
25 | #include "mathutils.h" |
---|
26 | #include "config.h" |
---|
27 | |
---|
28 | fvec_t * new_aubio_window(uint_t size, aubio_window_type wintype) { |
---|
29 | // create fvec of size x 1 channel |
---|
30 | fvec_t * win = new_fvec( size, 1); |
---|
31 | smpl_t * w = win->data[0]; |
---|
32 | uint_t i; |
---|
33 | switch(wintype) { |
---|
34 | case aubio_win_rectangle: |
---|
35 | for (i=0;i<size;i++) |
---|
36 | w[i] = 0.5; |
---|
37 | break; |
---|
38 | case aubio_win_hamming: |
---|
39 | for (i=0;i<size;i++) |
---|
40 | w[i] = 0.54 - 0.46 * COS(TWO_PI * i / (size)); |
---|
41 | break; |
---|
42 | case aubio_win_hanning: |
---|
43 | for (i=0;i<size;i++) |
---|
44 | w[i] = 0.5 - (0.5 * COS(TWO_PI * i / (size))); |
---|
45 | break; |
---|
46 | case aubio_win_hanningz: |
---|
47 | for (i=0;i<size;i++) |
---|
48 | w[i] = 0.5 * (1.0 - COS(TWO_PI * i / (size))); |
---|
49 | break; |
---|
50 | case aubio_win_blackman: |
---|
51 | for (i=0;i<size;i++) |
---|
52 | w[i] = 0.42 |
---|
53 | - 0.50 * COS( TWO_PI*i/(size-1.0)) |
---|
54 | + 0.08 * COS(2.0*TWO_PI*i/(size-1.0)); |
---|
55 | break; |
---|
56 | case aubio_win_blackman_harris: |
---|
57 | for (i=0;i<size;i++) |
---|
58 | w[i] = 0.35875 |
---|
59 | - 0.48829 * COS( TWO_PI*i/(size-1.0)) |
---|
60 | + 0.14128 * COS(2.0*TWO_PI*i/(size-1.0)) |
---|
61 | - 0.01168 * COS(3.0*TWO_PI*i/(size-1.0)); |
---|
62 | break; |
---|
63 | case aubio_win_gaussian: |
---|
64 | for (i=0;i<size;i++) |
---|
65 | w[i] = EXP(- 1.0 / SQR(size) * SQR(2.0*i-size)); |
---|
66 | break; |
---|
67 | case aubio_win_welch: |
---|
68 | for (i=0;i<size;i++) |
---|
69 | w[i] = 1.0 - SQR((2*i-size)/(size+1.0)); |
---|
70 | break; |
---|
71 | case aubio_win_parzen: |
---|
72 | for (i=0;i<size;i++) |
---|
73 | w[i] = 1.0 - ABS((2*i-size)/(size+1.0)); |
---|
74 | break; |
---|
75 | default: |
---|
76 | break; |
---|
77 | } |
---|
78 | return win; |
---|
79 | } |
---|
80 | |
---|
81 | smpl_t aubio_unwrap2pi(smpl_t phase) { |
---|
82 | /* mod(phase+pi,-2pi)+pi */ |
---|
83 | return phase + TWO_PI * (1. + FLOOR(-(phase+PI)/TWO_PI)); |
---|
84 | } |
---|
85 | |
---|
86 | smpl_t vec_mean(fvec_t *s) { |
---|
87 | uint_t i,j; |
---|
88 | smpl_t tmp = 0.0f; |
---|
89 | for (i=0; i < s->channels; i++) |
---|
90 | for (j=0; j < s->length; j++) |
---|
91 | tmp += s->data[i][j]; |
---|
92 | return tmp/(smpl_t)(s->length); |
---|
93 | } |
---|
94 | |
---|
95 | smpl_t vec_sum(fvec_t *s) { |
---|
96 | uint_t i,j; |
---|
97 | smpl_t tmp = 0.0f; |
---|
98 | for (i=0; i < s->channels; i++) |
---|
99 | for (j=0; j < s->length; j++) |
---|
100 | tmp += s->data[i][j]; |
---|
101 | return tmp; |
---|
102 | } |
---|
103 | |
---|
104 | smpl_t vec_max(fvec_t *s) { |
---|
105 | uint_t i,j; |
---|
106 | smpl_t tmp = 0.0f; |
---|
107 | for (i=0; i < s->channels; i++) |
---|
108 | for (j=0; j < s->length; j++) |
---|
109 | tmp = (tmp > s->data[i][j])? tmp : s->data[i][j]; |
---|
110 | return tmp; |
---|
111 | } |
---|
112 | |
---|
113 | smpl_t vec_min(fvec_t *s) { |
---|
114 | uint_t i,j; |
---|
115 | smpl_t tmp = s->data[0][0]; |
---|
116 | for (i=0; i < s->channels; i++) |
---|
117 | for (j=0; j < s->length; j++) |
---|
118 | tmp = (tmp < s->data[i][j])? tmp : s->data[i][j] ; |
---|
119 | return tmp; |
---|
120 | } |
---|
121 | |
---|
122 | uint_t vec_min_elem(fvec_t *s) { |
---|
123 | uint_t i,j=0, pos=0.; |
---|
124 | smpl_t tmp = s->data[0][0]; |
---|
125 | for (i=0; i < s->channels; i++) |
---|
126 | for (j=0; j < s->length; j++) { |
---|
127 | pos = (tmp < s->data[i][j])? pos : j; |
---|
128 | tmp = (tmp < s->data[i][j])? tmp : s->data[i][j] ; |
---|
129 | } |
---|
130 | return pos; |
---|
131 | } |
---|
132 | |
---|
133 | uint_t vec_max_elem(fvec_t *s) { |
---|
134 | uint_t i,j=0, pos=0.; |
---|
135 | smpl_t tmp = 0.0f; |
---|
136 | for (i=0; i < s->channels; i++) |
---|
137 | for (j=0; j < s->length; j++) { |
---|
138 | pos = (tmp > s->data[i][j])? pos : j; |
---|
139 | tmp = (tmp > s->data[i][j])? tmp : s->data[i][j] ; |
---|
140 | } |
---|
141 | return pos; |
---|
142 | } |
---|
143 | |
---|
144 | void vec_shift(fvec_t *s) { |
---|
145 | uint_t i,j; |
---|
146 | //smpl_t tmp = 0.0f; |
---|
147 | for (i=0; i < s->channels; i++) |
---|
148 | for (j=0; j < s->length / 2 ; j++) { |
---|
149 | //tmp = s->data[i][j]; |
---|
150 | //s->data[i][j] = s->data[i][j+s->length/2]; |
---|
151 | //s->data[i][j+s->length/2] = tmp; |
---|
152 | ELEM_SWAP(s->data[i][j],s->data[i][j+s->length/2]); |
---|
153 | } |
---|
154 | } |
---|
155 | |
---|
156 | smpl_t vec_local_energy(fvec_t * f) { |
---|
157 | smpl_t locE = 0.; |
---|
158 | uint_t i,j; |
---|
159 | for (i=0;i<f->channels;i++) |
---|
160 | for (j=0;j<f->length;j++) |
---|
161 | locE+=SQR(f->data[i][j]); |
---|
162 | return locE; |
---|
163 | } |
---|
164 | |
---|
165 | smpl_t vec_local_hfc(fvec_t * f) { |
---|
166 | smpl_t locE = 0.; |
---|
167 | uint_t i,j; |
---|
168 | for (i=0;i<f->channels;i++) |
---|
169 | for (j=0;j<f->length;j++) |
---|
170 | locE+=(i+1)*f->data[i][j]; |
---|
171 | return locE; |
---|
172 | } |
---|
173 | |
---|
174 | smpl_t vec_alpha_norm(fvec_t * DF, smpl_t alpha) { |
---|
175 | smpl_t tmp = 0.; |
---|
176 | uint_t i,j; |
---|
177 | for (i=0;i<DF->channels;i++) |
---|
178 | for (j=0;j<DF->length;j++) |
---|
179 | tmp += POW(ABS(DF->data[i][j]),alpha); |
---|
180 | return POW(tmp/DF->length,1./alpha); |
---|
181 | } |
---|
182 | |
---|
183 | void vec_dc_removal(fvec_t * mag) { |
---|
184 | smpl_t mini = 0.; |
---|
185 | uint_t length = mag->length, i=0, j; |
---|
186 | mini = vec_min(mag); |
---|
187 | for (j=0;j<length;j++) { |
---|
188 | mag->data[i][j] -= mini; |
---|
189 | } |
---|
190 | } |
---|
191 | |
---|
192 | void vec_alpha_normalise(fvec_t * mag, uint_t alpha) { |
---|
193 | smpl_t alphan = 1.; |
---|
194 | uint_t length = mag->length, i=0, j; |
---|
195 | alphan = vec_alpha_norm(mag,alpha); |
---|
196 | for (j=0;j<length;j++){ |
---|
197 | mag->data[i][j] /= alphan; |
---|
198 | } |
---|
199 | } |
---|
200 | |
---|
201 | void vec_add(fvec_t * mag, smpl_t threshold) { |
---|
202 | uint_t length = mag->length, i=0, j; |
---|
203 | for (j=0;j<length;j++) { |
---|
204 | mag->data[i][j] += threshold; |
---|
205 | } |
---|
206 | } |
---|
207 | |
---|
208 | void vec_adapt_thres(fvec_t * vec, fvec_t * tmp, |
---|
209 | uint_t post, uint_t pre) { |
---|
210 | uint_t length = vec->length, i=0, j; |
---|
211 | for (j=0;j<length;j++) { |
---|
212 | vec->data[i][j] -= vec_moving_thres(vec, tmp, post, pre, j); |
---|
213 | } |
---|
214 | } |
---|
215 | |
---|
216 | smpl_t vec_moving_thres(fvec_t * vec, fvec_t * tmpvec, |
---|
217 | uint_t post, uint_t pre, uint_t pos) { |
---|
218 | smpl_t * medar = (smpl_t *)tmpvec->data[0]; |
---|
219 | uint_t k; |
---|
220 | uint_t win_length = post+pre+1; |
---|
221 | uint_t length = vec->length; |
---|
222 | /* post part of the buffer does not exist */ |
---|
223 | if (pos<post+1) { |
---|
224 | for (k=0;k<post+1-pos;k++) |
---|
225 | medar[k] = 0.; /* 0-padding at the beginning */ |
---|
226 | for (k=post+1-pos;k<win_length;k++) |
---|
227 | medar[k] = vec->data[0][k+pos-post]; |
---|
228 | /* the buffer is fully defined */ |
---|
229 | } else if (pos+pre<length) { |
---|
230 | for (k=0;k<win_length;k++) |
---|
231 | medar[k] = vec->data[0][k+pos-post]; |
---|
232 | /* pre part of the buffer does not exist */ |
---|
233 | } else { |
---|
234 | for (k=0;k<length-pos+post;k++) |
---|
235 | medar[k] = vec->data[0][k+pos-post]; |
---|
236 | for (k=length-pos+post;k<win_length;k++) |
---|
237 | medar[k] = 0.; /* 0-padding at the end */ |
---|
238 | } |
---|
239 | return vec_median(tmpvec); |
---|
240 | } |
---|
241 | |
---|
242 | smpl_t vec_median(fvec_t * input) { |
---|
243 | uint_t n = input->length; |
---|
244 | smpl_t * arr = (smpl_t *) input->data[0]; |
---|
245 | uint_t low, high ; |
---|
246 | uint_t median; |
---|
247 | uint_t middle, ll, hh; |
---|
248 | |
---|
249 | low = 0 ; high = n-1 ; median = (low + high) / 2; |
---|
250 | for (;;) { |
---|
251 | if (high <= low) /* One element only */ |
---|
252 | return arr[median] ; |
---|
253 | |
---|
254 | if (high == low + 1) { /* Two elements only */ |
---|
255 | if (arr[low] > arr[high]) |
---|
256 | ELEM_SWAP(arr[low], arr[high]) ; |
---|
257 | return arr[median] ; |
---|
258 | } |
---|
259 | |
---|
260 | /* Find median of low, middle and high items; swap into position low */ |
---|
261 | middle = (low + high) / 2; |
---|
262 | if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]); |
---|
263 | if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]); |
---|
264 | if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ; |
---|
265 | |
---|
266 | /* Swap low item (now in position middle) into position (low+1) */ |
---|
267 | ELEM_SWAP(arr[middle], arr[low+1]) ; |
---|
268 | |
---|
269 | /* Nibble from each end towards middle, swapping items when stuck */ |
---|
270 | ll = low + 1; |
---|
271 | hh = high; |
---|
272 | for (;;) { |
---|
273 | do ll++; while (arr[low] > arr[ll]) ; |
---|
274 | do hh--; while (arr[hh] > arr[low]) ; |
---|
275 | |
---|
276 | if (hh < ll) |
---|
277 | break; |
---|
278 | |
---|
279 | ELEM_SWAP(arr[ll], arr[hh]) ; |
---|
280 | } |
---|
281 | |
---|
282 | /* Swap middle item (in position low) back into correct position */ |
---|
283 | ELEM_SWAP(arr[low], arr[hh]) ; |
---|
284 | |
---|
285 | /* Re-set active partition */ |
---|
286 | if (hh <= median) |
---|
287 | low = ll; |
---|
288 | if (hh >= median) |
---|
289 | high = hh - 1; |
---|
290 | } |
---|
291 | } |
---|
292 | |
---|
293 | smpl_t vec_quadint(fvec_t * x,uint_t pos, uint_t span) { |
---|
294 | smpl_t s0, s1, s2; |
---|
295 | uint_t x0 = (pos < span) ? pos : pos - span; |
---|
296 | uint_t x2 = (pos + span < x->length) ? pos + span : pos; |
---|
297 | if (x0 == pos) return (x->data[0][pos] <= x->data[0][x2]) ? pos : x2; |
---|
298 | if (x2 == pos) return (x->data[0][pos] <= x->data[0][x0]) ? pos : x0; |
---|
299 | s0 = x->data[0][x0]; |
---|
300 | s1 = x->data[0][pos] ; |
---|
301 | s2 = x->data[0][x2]; |
---|
302 | return pos + 0.5 * (s2 - s0 ) / (s2 - 2.* s1 + s0); |
---|
303 | } |
---|
304 | |
---|
305 | smpl_t aubio_quadfrac(smpl_t s0, smpl_t s1, smpl_t s2, smpl_t pf) { |
---|
306 | smpl_t tmp = s0 + (pf/2.) * (pf * ( s0 - 2.*s1 + s2 ) - 3.*s0 + 4.*s1 - s2); |
---|
307 | return tmp; |
---|
308 | } |
---|
309 | |
---|
310 | uint_t vec_peakpick(fvec_t * onset, uint_t pos) { |
---|
311 | uint_t i=0, tmp=0; |
---|
312 | /*for (i=0;i<onset->channels;i++)*/ |
---|
313 | tmp = (onset->data[i][pos] > onset->data[i][pos-1] |
---|
314 | && onset->data[i][pos] > onset->data[i][pos+1] |
---|
315 | && onset->data[i][pos] > 0.); |
---|
316 | return tmp; |
---|
317 | } |
---|
318 | |
---|
319 | smpl_t aubio_freqtomidi(smpl_t freq) { |
---|
320 | /* log(freq/A-2)/log(2) */ |
---|
321 | smpl_t midi = freq/6.875; |
---|
322 | midi = LOG(midi)/0.69314718055995; |
---|
323 | midi *= 12; |
---|
324 | midi -= 3; |
---|
325 | return midi; |
---|
326 | } |
---|
327 | |
---|
328 | smpl_t aubio_miditofreq(smpl_t midi) { |
---|
329 | smpl_t freq = (midi+3.)/12.; |
---|
330 | freq = EXP(freq*0.69314718055995); |
---|
331 | freq *= 6.875; |
---|
332 | return freq; |
---|
333 | } |
---|
334 | |
---|
335 | smpl_t aubio_bintofreq(smpl_t bin, smpl_t samplerate, smpl_t fftsize) { |
---|
336 | smpl_t freq = samplerate/fftsize; |
---|
337 | return freq*bin; |
---|
338 | } |
---|
339 | |
---|
340 | smpl_t aubio_bintomidi(smpl_t bin, smpl_t samplerate, smpl_t fftsize) { |
---|
341 | smpl_t midi = aubio_bintofreq(bin,samplerate,fftsize); |
---|
342 | return aubio_freqtomidi(midi); |
---|
343 | } |
---|
344 | |
---|
345 | smpl_t aubio_freqtobin(smpl_t freq, smpl_t samplerate, smpl_t fftsize) { |
---|
346 | smpl_t bin = fftsize/samplerate; |
---|
347 | return freq*bin; |
---|
348 | } |
---|
349 | |
---|
350 | smpl_t aubio_miditobin(smpl_t midi, smpl_t samplerate, smpl_t fftsize) { |
---|
351 | smpl_t freq = aubio_miditofreq(midi); |
---|
352 | return aubio_freqtobin(freq,samplerate,fftsize); |
---|
353 | } |
---|
354 | |
---|
355 | /** returns 1 if wassilence is 0 and RMS(ibuf)<threshold |
---|
356 | * \bug mono |
---|
357 | */ |
---|
358 | uint_t aubio_silence_detection(fvec_t * ibuf, smpl_t threshold) { |
---|
359 | smpl_t loudness = 0; |
---|
360 | uint_t i=0,j; |
---|
361 | for (j=0;j<ibuf->length;j++) { |
---|
362 | loudness += SQR(ibuf->data[i][j]); |
---|
363 | } |
---|
364 | loudness = SQRT(loudness); |
---|
365 | loudness /= (smpl_t)ibuf->length; |
---|
366 | loudness = LIN2DB(loudness); |
---|
367 | |
---|
368 | return (loudness < threshold); |
---|
369 | } |
---|
370 | |
---|
371 | /** returns level log(RMS(ibuf)) if < threshold, 1 otherwise |
---|
372 | * \bug mono |
---|
373 | */ |
---|
374 | smpl_t aubio_level_detection(fvec_t * ibuf, smpl_t threshold) { |
---|
375 | smpl_t loudness = 0; |
---|
376 | uint_t i=0,j; |
---|
377 | for (j=0;j<ibuf->length;j++) { |
---|
378 | loudness += SQR(ibuf->data[i][j]); |
---|
379 | } |
---|
380 | loudness = SQRT(loudness); |
---|
381 | loudness /= (smpl_t)ibuf->length; |
---|
382 | loudness = LIN2DB(loudness); |
---|
383 | |
---|
384 | if (loudness < threshold) |
---|
385 | return 1.; |
---|
386 | else |
---|
387 | return loudness; |
---|
388 | } |
---|
389 | |
---|
390 | smpl_t aubio_zero_crossing_rate(fvec_t * input) { |
---|
391 | uint_t i=0,j; |
---|
392 | uint_t zcr = 0; |
---|
393 | for ( j = 1; j < input->length; j++ ) { |
---|
394 | // previous was strictly negative |
---|
395 | if( input->data[i][j-1] < 0. ) { |
---|
396 | // current is positive or null |
---|
397 | if ( input->data[i][j] >= 0. ) { |
---|
398 | zcr += 1; |
---|
399 | } |
---|
400 | // previous was positive or null |
---|
401 | } else { |
---|
402 | // current is strictly negative |
---|
403 | if ( input->data[i][j] < 0. ) { |
---|
404 | zcr += 1; |
---|
405 | } |
---|
406 | } |
---|
407 | } |
---|
408 | return zcr/(smpl_t)input->length; |
---|
409 | } |
---|
410 | |
---|
411 | void aubio_autocorr(fvec_t * input, fvec_t * output) { |
---|
412 | uint_t i = 0, j = 0, length = input->length; |
---|
413 | smpl_t * data = input->data[0]; |
---|
414 | smpl_t * acf = output->data[0]; |
---|
415 | smpl_t tmp =0.; |
---|
416 | for(i=0;i<length;i++){ |
---|
417 | for(j=i;j<length;j++){ |
---|
418 | tmp += data[j-i]*data[j]; |
---|
419 | } |
---|
420 | acf[i] = tmp /(smpl_t)(length-i); |
---|
421 | tmp = 0.0; |
---|
422 | } |
---|
423 | } |
---|
424 | |
---|
425 | void aubio_cleanup(void) { |
---|
426 | #if HAVE_FFTW3 |
---|
427 | fftw_cleanup(); |
---|
428 | #else |
---|
429 | #if HAVE_FFTW3F |
---|
430 | fftwf_cleanup(); |
---|
431 | #endif |
---|
432 | #endif |
---|
433 | } |
---|