1 | /* |
---|
2 | Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org> |
---|
3 | |
---|
4 | This file is part of aubio. |
---|
5 | |
---|
6 | aubio is free software: you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation, either version 3 of the License, or |
---|
9 | (at your option) any later version. |
---|
10 | |
---|
11 | aubio is distributed in the hope that it will be useful, |
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
14 | GNU General Public License for more details. |
---|
15 | |
---|
16 | You should have received a copy of the GNU General Public License |
---|
17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
18 | |
---|
19 | */ |
---|
20 | |
---|
21 | /* see in mathutils.h for doc */ |
---|
22 | |
---|
23 | #include "aubio_priv.h" |
---|
24 | #include "fvec.h" |
---|
25 | #include "mathutils.h" |
---|
26 | #include "musicutils.h" |
---|
27 | #include "config.h" |
---|
28 | |
---|
29 | |
---|
30 | /** Window types */ |
---|
31 | typedef enum |
---|
32 | { |
---|
33 | aubio_win_rectangle, |
---|
34 | aubio_win_hamming, |
---|
35 | aubio_win_hanning, |
---|
36 | aubio_win_hanningz, |
---|
37 | aubio_win_blackman, |
---|
38 | aubio_win_blackman_harris, |
---|
39 | aubio_win_gaussian, |
---|
40 | aubio_win_welch, |
---|
41 | aubio_win_parzen, |
---|
42 | aubio_win_default = aubio_win_hanningz, |
---|
43 | } aubio_window_type; |
---|
44 | |
---|
45 | fvec_t * |
---|
46 | new_aubio_window (char_t * window_type, uint_t size) |
---|
47 | { |
---|
48 | fvec_t * win = new_fvec (size); |
---|
49 | smpl_t * w = win->data; |
---|
50 | uint_t i; |
---|
51 | aubio_window_type wintype; |
---|
52 | if (strcmp (window_type, "rectangle") == 0) |
---|
53 | wintype = aubio_win_rectangle; |
---|
54 | else if (strcmp (window_type, "hamming") == 0) |
---|
55 | wintype = aubio_win_hamming; |
---|
56 | else if (strcmp (window_type, "hanning") == 0) |
---|
57 | wintype = aubio_win_hanning; |
---|
58 | else if (strcmp (window_type, "hanningz") == 0) |
---|
59 | wintype = aubio_win_hanningz; |
---|
60 | else if (strcmp (window_type, "blackman") == 0) |
---|
61 | wintype = aubio_win_blackman; |
---|
62 | else if (strcmp (window_type, "blackman_harris") == 0) |
---|
63 | wintype = aubio_win_blackman_harris; |
---|
64 | else if (strcmp (window_type, "gaussian") == 0) |
---|
65 | wintype = aubio_win_gaussian; |
---|
66 | else if (strcmp (window_type, "welch") == 0) |
---|
67 | wintype = aubio_win_welch; |
---|
68 | else if (strcmp (window_type, "parzen") == 0) |
---|
69 | wintype = aubio_win_parzen; |
---|
70 | else if (strcmp (window_type, "default") == 0) |
---|
71 | wintype = aubio_win_default; |
---|
72 | else { |
---|
73 | AUBIO_ERR ("unknown window type %s, using default.\n", window_type); |
---|
74 | wintype = aubio_win_default; |
---|
75 | return NULL; |
---|
76 | } |
---|
77 | switch(wintype) { |
---|
78 | case aubio_win_rectangle: |
---|
79 | for (i=0;i<size;i++) |
---|
80 | w[i] = 0.5; |
---|
81 | break; |
---|
82 | case aubio_win_hamming: |
---|
83 | for (i=0;i<size;i++) |
---|
84 | w[i] = 0.54 - 0.46 * COS(TWO_PI * i / (size)); |
---|
85 | break; |
---|
86 | case aubio_win_hanning: |
---|
87 | for (i=0;i<size;i++) |
---|
88 | w[i] = 0.5 - (0.5 * COS(TWO_PI * i / (size))); |
---|
89 | break; |
---|
90 | case aubio_win_hanningz: |
---|
91 | for (i=0;i<size;i++) |
---|
92 | w[i] = 0.5 * (1.0 - COS(TWO_PI * i / (size))); |
---|
93 | break; |
---|
94 | case aubio_win_blackman: |
---|
95 | for (i=0;i<size;i++) |
---|
96 | w[i] = 0.42 |
---|
97 | - 0.50 * COS( TWO_PI*i/(size-1.0)) |
---|
98 | + 0.08 * COS(2.0*TWO_PI*i/(size-1.0)); |
---|
99 | break; |
---|
100 | case aubio_win_blackman_harris: |
---|
101 | for (i=0;i<size;i++) |
---|
102 | w[i] = 0.35875 |
---|
103 | - 0.48829 * COS( TWO_PI*i/(size-1.0)) |
---|
104 | + 0.14128 * COS(2.0*TWO_PI*i/(size-1.0)) |
---|
105 | - 0.01168 * COS(3.0*TWO_PI*i/(size-1.0)); |
---|
106 | break; |
---|
107 | case aubio_win_gaussian: |
---|
108 | for (i=0;i<size;i++) |
---|
109 | w[i] = EXP(- 1.0 / SQR(size) * SQR(2.0*i-size)); |
---|
110 | break; |
---|
111 | case aubio_win_welch: |
---|
112 | for (i=0;i<size;i++) |
---|
113 | w[i] = 1.0 - SQR((2*i-size)/(size+1.0)); |
---|
114 | break; |
---|
115 | case aubio_win_parzen: |
---|
116 | for (i=0;i<size;i++) |
---|
117 | w[i] = 1.0 - ABS((2*i-size)/(size+1.0)); |
---|
118 | break; |
---|
119 | default: |
---|
120 | break; |
---|
121 | } |
---|
122 | return win; |
---|
123 | } |
---|
124 | |
---|
125 | smpl_t |
---|
126 | aubio_unwrap2pi (smpl_t phase) |
---|
127 | { |
---|
128 | /* mod(phase+pi,-2pi)+pi */ |
---|
129 | return phase + TWO_PI * (1. + FLOOR (-(phase + PI) / TWO_PI)); |
---|
130 | } |
---|
131 | |
---|
132 | smpl_t |
---|
133 | fvec_mean (fvec_t * s) |
---|
134 | { |
---|
135 | uint_t j; |
---|
136 | smpl_t tmp = 0.0; |
---|
137 | for (j = 0; j < s->length; j++) { |
---|
138 | tmp += s->data[j]; |
---|
139 | } |
---|
140 | return tmp / (smpl_t) (s->length); |
---|
141 | } |
---|
142 | |
---|
143 | smpl_t |
---|
144 | fvec_sum (fvec_t * s) |
---|
145 | { |
---|
146 | uint_t j; |
---|
147 | smpl_t tmp = 0.0; |
---|
148 | for (j = 0; j < s->length; j++) { |
---|
149 | tmp += s->data[j]; |
---|
150 | } |
---|
151 | return tmp; |
---|
152 | } |
---|
153 | |
---|
154 | smpl_t |
---|
155 | fvec_max (fvec_t * s) |
---|
156 | { |
---|
157 | uint_t j; |
---|
158 | smpl_t tmp = 0.0; |
---|
159 | for (j = 0; j < s->length; j++) { |
---|
160 | tmp = (tmp > s->data[j]) ? tmp : s->data[j]; |
---|
161 | } |
---|
162 | return tmp; |
---|
163 | } |
---|
164 | |
---|
165 | smpl_t |
---|
166 | fvec_min (fvec_t * s) |
---|
167 | { |
---|
168 | uint_t j; |
---|
169 | smpl_t tmp = s->data[0]; |
---|
170 | for (j = 0; j < s->length; j++) { |
---|
171 | tmp = (tmp < s->data[j]) ? tmp : s->data[j]; |
---|
172 | } |
---|
173 | return tmp; |
---|
174 | } |
---|
175 | |
---|
176 | uint_t |
---|
177 | fvec_min_elem (fvec_t * s) |
---|
178 | { |
---|
179 | uint_t j, pos = 0.; |
---|
180 | smpl_t tmp = s->data[0]; |
---|
181 | for (j = 0; j < s->length; j++) { |
---|
182 | pos = (tmp < s->data[j]) ? pos : j; |
---|
183 | tmp = (tmp < s->data[j]) ? tmp : s->data[j]; |
---|
184 | } |
---|
185 | return pos; |
---|
186 | } |
---|
187 | |
---|
188 | uint_t |
---|
189 | fvec_max_elem (fvec_t * s) |
---|
190 | { |
---|
191 | uint_t j, pos = 0; |
---|
192 | smpl_t tmp = 0.0; |
---|
193 | for (j = 0; j < s->length; j++) { |
---|
194 | pos = (tmp > s->data[j]) ? pos : j; |
---|
195 | tmp = (tmp > s->data[j]) ? tmp : s->data[j]; |
---|
196 | } |
---|
197 | return pos; |
---|
198 | } |
---|
199 | |
---|
200 | void |
---|
201 | fvec_shift (fvec_t * s) |
---|
202 | { |
---|
203 | uint_t j; |
---|
204 | for (j = 0; j < s->length / 2; j++) { |
---|
205 | ELEM_SWAP (s->data[j], s->data[j + s->length / 2]); |
---|
206 | } |
---|
207 | } |
---|
208 | |
---|
209 | smpl_t |
---|
210 | fvec_local_energy (fvec_t * f) |
---|
211 | { |
---|
212 | smpl_t energy = 0.; |
---|
213 | uint_t j; |
---|
214 | for (j = 0; j < f->length; j++) { |
---|
215 | energy += SQR (f->data[j]); |
---|
216 | } |
---|
217 | return energy; |
---|
218 | } |
---|
219 | |
---|
220 | smpl_t |
---|
221 | fvec_local_hfc (fvec_t * v) |
---|
222 | { |
---|
223 | smpl_t hfc = 0.; |
---|
224 | uint_t j; |
---|
225 | for (j = 0; j < v->length; j++) { |
---|
226 | hfc += (j + 1) * v->data[j]; |
---|
227 | } |
---|
228 | return hfc; |
---|
229 | } |
---|
230 | |
---|
231 | void |
---|
232 | fvec_min_removal (fvec_t * v) |
---|
233 | { |
---|
234 | smpl_t v_min = fvec_min (v); |
---|
235 | fvec_add (v, - v_min ); |
---|
236 | } |
---|
237 | |
---|
238 | smpl_t |
---|
239 | fvec_alpha_norm (fvec_t * o, smpl_t alpha) |
---|
240 | { |
---|
241 | uint_t j; |
---|
242 | smpl_t tmp = 0.; |
---|
243 | for (j = 0; j < o->length; j++) { |
---|
244 | tmp += POW (ABS (o->data[j]), alpha); |
---|
245 | } |
---|
246 | return POW (tmp / o->length, 1. / alpha); |
---|
247 | } |
---|
248 | |
---|
249 | void |
---|
250 | fvec_alpha_normalise (fvec_t * o, smpl_t alpha) |
---|
251 | { |
---|
252 | uint_t j; |
---|
253 | smpl_t norm = fvec_alpha_norm (o, alpha); |
---|
254 | for (j = 0; j < o->length; j++) { |
---|
255 | o->data[j] /= norm; |
---|
256 | } |
---|
257 | } |
---|
258 | |
---|
259 | void |
---|
260 | fvec_add (fvec_t * o, smpl_t val) |
---|
261 | { |
---|
262 | uint_t j; |
---|
263 | for (j = 0; j < o->length; j++) { |
---|
264 | o->data[j] += val; |
---|
265 | } |
---|
266 | } |
---|
267 | |
---|
268 | void fvec_adapt_thres(fvec_t * vec, fvec_t * tmp, |
---|
269 | uint_t post, uint_t pre) { |
---|
270 | uint_t length = vec->length, j; |
---|
271 | for (j=0;j<length;j++) { |
---|
272 | vec->data[j] -= fvec_moving_thres(vec, tmp, post, pre, j); |
---|
273 | } |
---|
274 | } |
---|
275 | |
---|
276 | smpl_t |
---|
277 | fvec_moving_thres (fvec_t * vec, fvec_t * tmpvec, |
---|
278 | uint_t post, uint_t pre, uint_t pos) |
---|
279 | { |
---|
280 | uint_t k; |
---|
281 | smpl_t *medar = (smpl_t *) tmpvec->data; |
---|
282 | uint_t win_length = post + pre + 1; |
---|
283 | uint_t length = vec->length; |
---|
284 | /* post part of the buffer does not exist */ |
---|
285 | if (pos < post + 1) { |
---|
286 | for (k = 0; k < post + 1 - pos; k++) |
---|
287 | medar[k] = 0.; /* 0-padding at the beginning */ |
---|
288 | for (k = post + 1 - pos; k < win_length; k++) |
---|
289 | medar[k] = vec->data[k + pos - post]; |
---|
290 | /* the buffer is fully defined */ |
---|
291 | } else if (pos + pre < length) { |
---|
292 | for (k = 0; k < win_length; k++) |
---|
293 | medar[k] = vec->data[k + pos - post]; |
---|
294 | /* pre part of the buffer does not exist */ |
---|
295 | } else { |
---|
296 | for (k = 0; k < length - pos + post; k++) |
---|
297 | medar[k] = vec->data[k + pos - post]; |
---|
298 | for (k = length - pos + post; k < win_length; k++) |
---|
299 | medar[k] = 0.; /* 0-padding at the end */ |
---|
300 | } |
---|
301 | return fvec_median (tmpvec); |
---|
302 | } |
---|
303 | |
---|
304 | smpl_t fvec_median (fvec_t * input) { |
---|
305 | uint_t n = input->length; |
---|
306 | smpl_t * arr = (smpl_t *) input->data; |
---|
307 | uint_t low, high ; |
---|
308 | uint_t median; |
---|
309 | uint_t middle, ll, hh; |
---|
310 | |
---|
311 | low = 0 ; high = n-1 ; median = (low + high) / 2; |
---|
312 | for (;;) { |
---|
313 | if (high <= low) /* One element only */ |
---|
314 | return arr[median] ; |
---|
315 | |
---|
316 | if (high == low + 1) { /* Two elements only */ |
---|
317 | if (arr[low] > arr[high]) |
---|
318 | ELEM_SWAP(arr[low], arr[high]) ; |
---|
319 | return arr[median] ; |
---|
320 | } |
---|
321 | |
---|
322 | /* Find median of low, middle and high items; swap into position low */ |
---|
323 | middle = (low + high) / 2; |
---|
324 | if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]); |
---|
325 | if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]); |
---|
326 | if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ; |
---|
327 | |
---|
328 | /* Swap low item (now in position middle) into position (low+1) */ |
---|
329 | ELEM_SWAP(arr[middle], arr[low+1]) ; |
---|
330 | |
---|
331 | /* Nibble from each end towards middle, swapping items when stuck */ |
---|
332 | ll = low + 1; |
---|
333 | hh = high; |
---|
334 | for (;;) { |
---|
335 | do ll++; while (arr[low] > arr[ll]) ; |
---|
336 | do hh--; while (arr[hh] > arr[low]) ; |
---|
337 | |
---|
338 | if (hh < ll) |
---|
339 | break; |
---|
340 | |
---|
341 | ELEM_SWAP(arr[ll], arr[hh]) ; |
---|
342 | } |
---|
343 | |
---|
344 | /* Swap middle item (in position low) back into correct position */ |
---|
345 | ELEM_SWAP(arr[low], arr[hh]) ; |
---|
346 | |
---|
347 | /* Re-set active partition */ |
---|
348 | if (hh <= median) |
---|
349 | low = ll; |
---|
350 | if (hh >= median) |
---|
351 | high = hh - 1; |
---|
352 | } |
---|
353 | } |
---|
354 | |
---|
355 | smpl_t fvec_quadint (fvec_t * x, uint_t pos) { |
---|
356 | smpl_t s0, s1, s2; |
---|
357 | uint_t x0 = (pos < 1) ? pos : pos - 1; |
---|
358 | uint_t x2 = (pos + 1 < x->length) ? pos + 1 : pos; |
---|
359 | if (x0 == pos) return (x->data[pos] <= x->data[x2]) ? pos : x2; |
---|
360 | if (x2 == pos) return (x->data[pos] <= x->data[x0]) ? pos : x0; |
---|
361 | s0 = x->data[x0]; |
---|
362 | s1 = x->data[pos]; |
---|
363 | s2 = x->data[x2]; |
---|
364 | return pos + 0.5 * (s2 - s0 ) / (s2 - 2.* s1 + s0); |
---|
365 | } |
---|
366 | |
---|
367 | uint_t fvec_peakpick(fvec_t * onset, uint_t pos) { |
---|
368 | uint_t tmp=0; |
---|
369 | tmp = (onset->data[pos] > onset->data[pos-1] |
---|
370 | && onset->data[pos] > onset->data[pos+1] |
---|
371 | && onset->data[pos] > 0.); |
---|
372 | return tmp; |
---|
373 | } |
---|
374 | |
---|
375 | smpl_t |
---|
376 | aubio_quadfrac (smpl_t s0, smpl_t s1, smpl_t s2, smpl_t pf) |
---|
377 | { |
---|
378 | smpl_t tmp = |
---|
379 | s0 + (pf / 2.) * (pf * (s0 - 2. * s1 + s2) - 3. * s0 + 4. * s1 - s2); |
---|
380 | return tmp; |
---|
381 | } |
---|
382 | |
---|
383 | smpl_t |
---|
384 | aubio_freqtomidi (smpl_t freq) |
---|
385 | { |
---|
386 | /* log(freq/A-2)/log(2) */ |
---|
387 | smpl_t midi = freq / 6.875; |
---|
388 | midi = LOG (midi) / 0.69314718055995; |
---|
389 | midi *= 12; |
---|
390 | midi -= 3; |
---|
391 | return midi; |
---|
392 | } |
---|
393 | |
---|
394 | smpl_t |
---|
395 | aubio_miditofreq (smpl_t midi) |
---|
396 | { |
---|
397 | smpl_t freq = (midi + 3.) / 12.; |
---|
398 | freq = EXP (freq * 0.69314718055995); |
---|
399 | freq *= 6.875; |
---|
400 | return freq; |
---|
401 | } |
---|
402 | |
---|
403 | smpl_t |
---|
404 | aubio_bintofreq (smpl_t bin, smpl_t samplerate, smpl_t fftsize) |
---|
405 | { |
---|
406 | smpl_t freq = samplerate / fftsize; |
---|
407 | return freq * bin; |
---|
408 | } |
---|
409 | |
---|
410 | smpl_t |
---|
411 | aubio_bintomidi (smpl_t bin, smpl_t samplerate, smpl_t fftsize) |
---|
412 | { |
---|
413 | smpl_t midi = aubio_bintofreq (bin, samplerate, fftsize); |
---|
414 | return aubio_freqtomidi (midi); |
---|
415 | } |
---|
416 | |
---|
417 | smpl_t |
---|
418 | aubio_freqtobin (smpl_t freq, smpl_t samplerate, smpl_t fftsize) |
---|
419 | { |
---|
420 | smpl_t bin = fftsize / samplerate; |
---|
421 | return freq * bin; |
---|
422 | } |
---|
423 | |
---|
424 | smpl_t |
---|
425 | aubio_miditobin (smpl_t midi, smpl_t samplerate, smpl_t fftsize) |
---|
426 | { |
---|
427 | smpl_t freq = aubio_miditofreq (midi); |
---|
428 | return aubio_freqtobin (freq, samplerate, fftsize); |
---|
429 | } |
---|
430 | |
---|
431 | uint_t |
---|
432 | aubio_is_power_of_two (uint_t a) |
---|
433 | { |
---|
434 | if ((a & (a - 1)) == 0) { |
---|
435 | return 1; |
---|
436 | } else { |
---|
437 | return 0; |
---|
438 | } |
---|
439 | } |
---|
440 | |
---|
441 | uint_t |
---|
442 | aubio_next_power_of_two (uint_t a) |
---|
443 | { |
---|
444 | uint_t i = 1; |
---|
445 | while (i < a) i <<= 1; |
---|
446 | return i; |
---|
447 | } |
---|
448 | |
---|
449 | smpl_t |
---|
450 | aubio_db_spl (fvec_t * o) |
---|
451 | { |
---|
452 | smpl_t val = SQRT (fvec_local_energy (o)); |
---|
453 | val /= (smpl_t) o->length; |
---|
454 | return LIN2DB (val); |
---|
455 | } |
---|
456 | |
---|
457 | uint_t |
---|
458 | aubio_silence_detection (fvec_t * o, smpl_t threshold) |
---|
459 | { |
---|
460 | return (aubio_db_spl (o) < threshold); |
---|
461 | } |
---|
462 | |
---|
463 | smpl_t |
---|
464 | aubio_level_detection (fvec_t * o, smpl_t threshold) |
---|
465 | { |
---|
466 | smpl_t db_spl = aubio_db_spl (o); |
---|
467 | if (db_spl < threshold) { |
---|
468 | return 1.; |
---|
469 | } else { |
---|
470 | return db_spl; |
---|
471 | } |
---|
472 | } |
---|
473 | |
---|
474 | smpl_t |
---|
475 | aubio_zero_crossing_rate (fvec_t * input) |
---|
476 | { |
---|
477 | uint_t j; |
---|
478 | uint_t zcr = 0; |
---|
479 | for (j = 1; j < input->length; j++) { |
---|
480 | // previous was strictly negative |
---|
481 | if (input->data[j - 1] < 0.) { |
---|
482 | // current is positive or null |
---|
483 | if (input->data[j] >= 0.) { |
---|
484 | zcr += 1; |
---|
485 | } |
---|
486 | // previous was positive or null |
---|
487 | } else { |
---|
488 | // current is strictly negative |
---|
489 | if (input->data[j] < 0.) { |
---|
490 | zcr += 1; |
---|
491 | } |
---|
492 | } |
---|
493 | } |
---|
494 | return zcr / (smpl_t) input->length; |
---|
495 | } |
---|
496 | |
---|
497 | void |
---|
498 | aubio_autocorr (fvec_t * input, fvec_t * output) |
---|
499 | { |
---|
500 | uint_t i, j, length = input->length; |
---|
501 | smpl_t *data, *acf; |
---|
502 | smpl_t tmp = 0; |
---|
503 | data = input->data; |
---|
504 | acf = output->data; |
---|
505 | for (i = 0; i < length; i++) { |
---|
506 | tmp = 0.; |
---|
507 | for (j = i; j < length; j++) { |
---|
508 | tmp += data[j - i] * data[j]; |
---|
509 | } |
---|
510 | acf[i] = tmp / (smpl_t) (length - i); |
---|
511 | } |
---|
512 | } |
---|
513 | |
---|
514 | void |
---|
515 | aubio_cleanup (void) |
---|
516 | { |
---|
517 | #if HAVE_FFTW3 |
---|
518 | fftw_cleanup (); |
---|
519 | #else |
---|
520 | #if HAVE_FFTW3F |
---|
521 | fftwf_cleanup (); |
---|
522 | #endif |
---|
523 | #endif |
---|
524 | } |
---|