1 | /* |
---|
2 | Copyright (C) 2003 Paul Brossier |
---|
3 | |
---|
4 | This program is free software; you can redistribute it and/or modify |
---|
5 | it under the terms of the GNU General Public License as published by |
---|
6 | the Free Software Foundation; either version 2 of the License, or |
---|
7 | (at your option) any later version. |
---|
8 | |
---|
9 | This program is distributed in the hope that it will be useful, |
---|
10 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
11 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
12 | GNU General Public License for more details. |
---|
13 | |
---|
14 | You should have received a copy of the GNU General Public License |
---|
15 | along with this program; if not, write to the Free Software |
---|
16 | Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
---|
17 | |
---|
18 | */ |
---|
19 | |
---|
20 | /* see in mathutils.h for doc */ |
---|
21 | |
---|
22 | #include "aubio_priv.h" |
---|
23 | #include "sample.h" |
---|
24 | #include "mathutils.h" |
---|
25 | |
---|
26 | void window(smpl_t *w, uint_t size, window_type_t wintype) { |
---|
27 | uint_t i; |
---|
28 | switch(wintype) { |
---|
29 | case rectangle: |
---|
30 | for (i=0;i<size;i++) |
---|
31 | w[i] = 0.5; |
---|
32 | break; |
---|
33 | case hamming: |
---|
34 | for (i=0;i<size;i++) |
---|
35 | w[i] = 0.54 - 0.46 * COS(TWO_PI * i / (size)); |
---|
36 | break; |
---|
37 | case hanning: |
---|
38 | for (i=0;i<size;i++) |
---|
39 | w[i] = 0.5 - (0.5 * COS(TWO_PI * i / (size))); |
---|
40 | break; |
---|
41 | case hanningz: |
---|
42 | for (i=0;i<size;i++) |
---|
43 | w[i] = 0.5 * (1.0 - COS(TWO_PI * i / (size))); |
---|
44 | break; |
---|
45 | case blackman: |
---|
46 | for (i=0;i<size;i++) |
---|
47 | w[i] = 0.42 |
---|
48 | - 0.50 * COS( TWO_PI*i/(size-1.0)) |
---|
49 | + 0.08 * COS(2.0*TWO_PI*i/(size-1.0)); |
---|
50 | break; |
---|
51 | case blackman_harris: |
---|
52 | for (i=0;i<size;i++) |
---|
53 | w[i] = 0.35875 |
---|
54 | - 0.48829 * COS( TWO_PI*i/(size-1.0)) |
---|
55 | + 0.14128 * COS(2.0*TWO_PI*i/(size-1.0)) |
---|
56 | - 0.01168 * COS(3.0*TWO_PI*i/(size-1.0)); |
---|
57 | break; |
---|
58 | case gaussian: |
---|
59 | for (i=0;i<size;i++) |
---|
60 | w[i] = EXP(- 1.0 / SQR(size) * SQR(2.0*i-size)); |
---|
61 | break; |
---|
62 | case welch: |
---|
63 | for (i=0;i<size;i++) |
---|
64 | w[i] = 1.0 - SQR((2*i-size)/(size+1.0)); |
---|
65 | break; |
---|
66 | case parzen: |
---|
67 | for (i=0;i<size;i++) |
---|
68 | w[i] = 1.0 - fabsf((2*i-size)/(size+1.0)); |
---|
69 | break; |
---|
70 | default: |
---|
71 | break; |
---|
72 | } |
---|
73 | } |
---|
74 | |
---|
75 | |
---|
76 | smpl_t unwrap2pi(smpl_t phase) { |
---|
77 | /* mod(phase+pi,-2pi)+pi */ |
---|
78 | return phase + TWO_PI * (1. + floorf(-(phase+PI)/TWO_PI)); |
---|
79 | } |
---|
80 | |
---|
81 | |
---|
82 | smpl_t vec_mean(fvec_t *s) |
---|
83 | { |
---|
84 | uint_t i,j; |
---|
85 | smpl_t tmp = 0.0f; |
---|
86 | for (i=0; i < s->channels; i++) |
---|
87 | for (j=0; j < s->length; j++) |
---|
88 | tmp += s->data[i][j]; |
---|
89 | return tmp/(smpl_t)(s->length); |
---|
90 | } |
---|
91 | |
---|
92 | |
---|
93 | smpl_t vec_sum(fvec_t *s) |
---|
94 | { |
---|
95 | uint_t i,j; |
---|
96 | smpl_t tmp = 0.0f; |
---|
97 | for (i=0; i < s->channels; i++) |
---|
98 | for (j=0; j < s->length; j++) |
---|
99 | tmp += s->data[i][j]; |
---|
100 | return tmp; |
---|
101 | } |
---|
102 | |
---|
103 | |
---|
104 | smpl_t vec_max(fvec_t *s) |
---|
105 | { |
---|
106 | uint_t i,j; |
---|
107 | smpl_t tmp = 0.0f; |
---|
108 | for (i=0; i < s->channels; i++) |
---|
109 | for (j=0; j < s->length; j++) |
---|
110 | tmp = (tmp > s->data[i][j])? tmp : s->data[i][j]; |
---|
111 | return tmp; |
---|
112 | } |
---|
113 | |
---|
114 | smpl_t vec_min(fvec_t *s) |
---|
115 | { |
---|
116 | uint_t i,j; |
---|
117 | smpl_t tmp = s->data[0][0]; |
---|
118 | for (i=0; i < s->channels; i++) |
---|
119 | for (j=0; j < s->length; j++) |
---|
120 | tmp = (tmp < s->data[i][j])? tmp : s->data[i][j] ; |
---|
121 | return tmp; |
---|
122 | } |
---|
123 | |
---|
124 | |
---|
125 | uint_t vec_min_elem(fvec_t *s) |
---|
126 | { |
---|
127 | uint_t i,j=0, pos=0.; |
---|
128 | smpl_t tmp = s->data[0][0]; |
---|
129 | for (i=0; i < s->channels; i++) |
---|
130 | for (j=0; j < s->length; j++) { |
---|
131 | pos = (tmp < s->data[i][j])? pos : j; |
---|
132 | tmp = (tmp < s->data[i][j])? tmp : s->data[i][j] ; |
---|
133 | } |
---|
134 | return pos; |
---|
135 | } |
---|
136 | |
---|
137 | uint_t vec_max_elem(fvec_t *s) |
---|
138 | { |
---|
139 | uint_t i,j=0, pos=0.; |
---|
140 | smpl_t tmp = 0.0f; |
---|
141 | for (i=0; i < s->channels; i++) |
---|
142 | for (j=0; j < s->length; j++) { |
---|
143 | pos = (tmp > s->data[i][j])? pos : j; |
---|
144 | tmp = (tmp > s->data[i][j])? tmp : s->data[i][j] ; |
---|
145 | } |
---|
146 | return pos; |
---|
147 | } |
---|
148 | |
---|
149 | void vec_shift(fvec_t *s) |
---|
150 | { |
---|
151 | uint_t i,j; |
---|
152 | //smpl_t tmp = 0.0f; |
---|
153 | for (i=0; i < s->channels; i++) |
---|
154 | for (j=0; j < s->length / 2 ; j++) { |
---|
155 | //tmp = s->data[i][j]; |
---|
156 | //s->data[i][j] = s->data[i][j+s->length/2]; |
---|
157 | //s->data[i][j+s->length/2] = tmp; |
---|
158 | ELEM_SWAP(s->data[i][j],s->data[i][j+s->length/2]); |
---|
159 | } |
---|
160 | } |
---|
161 | |
---|
162 | smpl_t vec_local_energy(fvec_t * f) |
---|
163 | { |
---|
164 | smpl_t locE = 0.; |
---|
165 | uint_t i,j; |
---|
166 | for (i=0;i<f->channels;i++) |
---|
167 | for (j=0;j<f->length;j++) |
---|
168 | locE+=SQR(f->data[i][j]); |
---|
169 | return locE; |
---|
170 | } |
---|
171 | |
---|
172 | smpl_t vec_local_hfc(fvec_t * f) |
---|
173 | { |
---|
174 | smpl_t locE = 0.; |
---|
175 | uint_t i,j; |
---|
176 | for (i=0;i<f->channels;i++) |
---|
177 | for (j=0;j<f->length;j++) |
---|
178 | locE+=(i+1)*f->data[i][j]; |
---|
179 | return locE; |
---|
180 | } |
---|
181 | |
---|
182 | smpl_t vec_alpha_norm(fvec_t * DF, smpl_t alpha) |
---|
183 | { |
---|
184 | smpl_t tmp = 0.; |
---|
185 | uint_t i,j; |
---|
186 | for (i=0;i<DF->channels;i++) |
---|
187 | for (j=0;j<DF->length;j++) |
---|
188 | tmp += POW(ABS(DF->data[i][j]),alpha); |
---|
189 | return POW(tmp/DF->length,1./alpha); |
---|
190 | } |
---|
191 | |
---|
192 | |
---|
193 | void vec_dc_removal(fvec_t * mag) |
---|
194 | { |
---|
195 | smpl_t mini = 0.; |
---|
196 | uint_t length = mag->length, i=0, j; |
---|
197 | mini = vec_min(mag); |
---|
198 | for (j=0;j<length;j++) { |
---|
199 | mag->data[i][j] -= mini; |
---|
200 | } |
---|
201 | } |
---|
202 | |
---|
203 | |
---|
204 | void vec_alpha_normalise(fvec_t * mag, uint_t alpha) |
---|
205 | { |
---|
206 | smpl_t alphan = 1.; |
---|
207 | uint_t length = mag->length, i=0, j; |
---|
208 | alphan = vec_alpha_norm(mag,alpha); |
---|
209 | for (j=0;j<length;j++){ |
---|
210 | mag->data[i][j] /= alphan; |
---|
211 | } |
---|
212 | } |
---|
213 | |
---|
214 | |
---|
215 | void vec_add(fvec_t * mag, smpl_t threshold) { |
---|
216 | uint_t length = mag->length, i=0, j; |
---|
217 | for (j=0;j<length;j++) { |
---|
218 | mag->data[i][j] += threshold; |
---|
219 | } |
---|
220 | } |
---|
221 | |
---|
222 | |
---|
223 | void vec_adapt_thres(fvec_t * vec, fvec_t * tmp, |
---|
224 | uint_t post, uint_t pre) |
---|
225 | { |
---|
226 | uint_t length = vec->length, i=0, j; |
---|
227 | for (j=0;j<length;j++) { |
---|
228 | vec->data[i][j] -= vec_moving_thres(vec, tmp, post, pre, j); |
---|
229 | } |
---|
230 | } |
---|
231 | |
---|
232 | smpl_t vec_moving_thres(fvec_t * vec, fvec_t * tmpvec, |
---|
233 | uint_t post, uint_t pre, uint_t pos) |
---|
234 | { |
---|
235 | smpl_t * medar = (smpl_t *)tmpvec->data[0]; |
---|
236 | uint_t k; |
---|
237 | uint_t win_length = post+pre+1; |
---|
238 | uint_t length = vec->length; |
---|
239 | /* post part of the buffer does not exist */ |
---|
240 | if (pos<post+1) { |
---|
241 | for (k=0;k<post+1-pos;k++) |
---|
242 | medar[k] = 0.; /* 0-padding at the beginning */ |
---|
243 | for (k=post+1-pos;k<win_length;k++) |
---|
244 | medar[k] = vec->data[0][k+pos-post]; |
---|
245 | /* the buffer is fully defined */ |
---|
246 | } else if (pos+pre<length) { |
---|
247 | for (k=0;k<win_length;k++) |
---|
248 | medar[k] = vec->data[0][k+pos-post]; |
---|
249 | /* pre part of the buffer does not exist */ |
---|
250 | } else { |
---|
251 | for (k=0;k<length-pos+post+1;k++) |
---|
252 | medar[k] = vec->data[0][k+pos-post]; |
---|
253 | for (k=length-pos+post+1;k<win_length;k++) |
---|
254 | medar[k] = 0.; /* 0-padding at the end */ |
---|
255 | } |
---|
256 | return vec_median(tmpvec); |
---|
257 | } |
---|
258 | |
---|
259 | smpl_t vec_median(fvec_t * input) { |
---|
260 | uint_t n = input->length; |
---|
261 | smpl_t * arr = (smpl_t *) input->data[0]; |
---|
262 | uint_t low, high ; |
---|
263 | uint_t median; |
---|
264 | uint_t middle, ll, hh; |
---|
265 | |
---|
266 | low = 0 ; high = n-1 ; median = (low + high) / 2; |
---|
267 | for (;;) { |
---|
268 | if (high <= low) /* One element only */ |
---|
269 | return arr[median] ; |
---|
270 | |
---|
271 | if (high == low + 1) { /* Two elements only */ |
---|
272 | if (arr[low] > arr[high]) |
---|
273 | ELEM_SWAP(arr[low], arr[high]) ; |
---|
274 | return arr[median] ; |
---|
275 | } |
---|
276 | |
---|
277 | /* Find median of low, middle and high items; swap into position low */ |
---|
278 | middle = (low + high) / 2; |
---|
279 | if (arr[middle] > arr[high]) ELEM_SWAP(arr[middle], arr[high]); |
---|
280 | if (arr[low] > arr[high]) ELEM_SWAP(arr[low], arr[high]); |
---|
281 | if (arr[middle] > arr[low]) ELEM_SWAP(arr[middle], arr[low]) ; |
---|
282 | |
---|
283 | /* Swap low item (now in position middle) into position (low+1) */ |
---|
284 | ELEM_SWAP(arr[middle], arr[low+1]) ; |
---|
285 | |
---|
286 | /* Nibble from each end towards middle, swapping items when stuck */ |
---|
287 | ll = low + 1; |
---|
288 | hh = high; |
---|
289 | for (;;) { |
---|
290 | do ll++; while (arr[low] > arr[ll]) ; |
---|
291 | do hh--; while (arr[hh] > arr[low]) ; |
---|
292 | |
---|
293 | if (hh < ll) |
---|
294 | break; |
---|
295 | |
---|
296 | ELEM_SWAP(arr[ll], arr[hh]) ; |
---|
297 | } |
---|
298 | |
---|
299 | /* Swap middle item (in position low) back into correct position */ |
---|
300 | ELEM_SWAP(arr[low], arr[hh]) ; |
---|
301 | |
---|
302 | /* Re-set active partition */ |
---|
303 | if (hh <= median) |
---|
304 | low = ll; |
---|
305 | if (hh >= median) |
---|
306 | high = hh - 1; |
---|
307 | } |
---|
308 | } |
---|
309 | |
---|
310 | smpl_t vec_quadint(fvec_t * x,uint_t pos) { |
---|
311 | uint_t span = 2; |
---|
312 | smpl_t step = 1./200.; |
---|
313 | /* hack : init resold to - something (in case x[pos+-span]<0)) */ |
---|
314 | smpl_t res, frac, s0, s1, s2, exactpos = (smpl_t)pos, resold = -1000.; |
---|
315 | if ((pos > span) && (pos < x->length-span)) { |
---|
316 | s0 = x->data[0][pos-span]; |
---|
317 | s1 = x->data[0][pos] ; |
---|
318 | s2 = x->data[0][pos+span]; |
---|
319 | /* increase frac */ |
---|
320 | for (frac = 0.; frac < 2.; frac = frac + step) { |
---|
321 | res = quadfrac(s0, s1, s2, frac); |
---|
322 | if (res > resold) |
---|
323 | resold = res; |
---|
324 | else { |
---|
325 | exactpos += (frac-step)*2. - 1.; |
---|
326 | break; |
---|
327 | } |
---|
328 | } |
---|
329 | } |
---|
330 | return exactpos; |
---|
331 | } |
---|
332 | |
---|
333 | smpl_t quadfrac(smpl_t s0, smpl_t s1, smpl_t s2, smpl_t pf) { |
---|
334 | smpl_t tmp = s0 + (pf/2.) * (pf * ( s0 - 2.*s1 + s2 ) - 3.*s0 + 4.*s1 - s2); |
---|
335 | return tmp; |
---|
336 | } |
---|
337 | |
---|
338 | uint_t vec_peakpick(fvec_t * onset, uint_t pos) { |
---|
339 | uint_t i=0, tmp=0; |
---|
340 | /*for (i=0;i<onset->channels;i++)*/ |
---|
341 | tmp = (onset->data[i][pos] > onset->data[i][pos-1] |
---|
342 | && onset->data[i][pos] > onset->data[i][pos+1] |
---|
343 | && onset->data[i][pos] > 0.); |
---|
344 | return tmp; |
---|
345 | } |
---|
346 | |
---|
347 | smpl_t freqtomidi(smpl_t freq) { |
---|
348 | smpl_t midi = freq/6.875; |
---|
349 | /* log(freq/A-2)/log(2) */ |
---|
350 | midi = LOG(midi)/0.69314718055995; |
---|
351 | midi *= 12; |
---|
352 | midi -= 3; |
---|
353 | return midi; |
---|
354 | } |
---|
355 | |
---|
356 | smpl_t bintofreq(smpl_t bin, smpl_t samplerate, smpl_t fftsize) { |
---|
357 | smpl_t freq = samplerate/fftsize; |
---|
358 | return freq*bin; |
---|
359 | } |
---|
360 | |
---|
361 | |
---|
362 | smpl_t bintomidi(smpl_t bin, smpl_t samplerate, smpl_t fftsize) { |
---|
363 | smpl_t midi = bintofreq(bin,samplerate,fftsize); |
---|
364 | return freqtomidi(midi); |
---|
365 | } |
---|
366 | |
---|
367 | |
---|
368 | |
---|
369 | /** returns 1 if wassilence is 0 and RMS(ibuf)<threshold |
---|
370 | * \bug mono |
---|
371 | */ |
---|
372 | uint_t aubio_silence_detection(fvec_t * ibuf, smpl_t threshold) { |
---|
373 | smpl_t loudness = 0; |
---|
374 | uint_t i=0,j; |
---|
375 | for (j=0;j<ibuf->length;j++) { |
---|
376 | loudness += SQR(ibuf->data[i][j]); |
---|
377 | } |
---|
378 | loudness = SQRT(loudness); |
---|
379 | loudness /= (smpl_t)ibuf->length; |
---|
380 | loudness = LIN2DB(loudness); |
---|
381 | |
---|
382 | return (loudness < threshold); |
---|
383 | } |
---|
384 | |
---|
385 | /** returns level log(RMS(ibuf)) if < threshold, 1 otherwise |
---|
386 | * \bug mono |
---|
387 | */ |
---|
388 | smpl_t aubio_level_detection(fvec_t * ibuf, smpl_t threshold) { |
---|
389 | smpl_t loudness = 0; |
---|
390 | uint_t i=0,j; |
---|
391 | for (j=0;j<ibuf->length;j++) { |
---|
392 | loudness += SQR(ibuf->data[i][j]); |
---|
393 | } |
---|
394 | loudness = SQRT(loudness); |
---|
395 | loudness /= (smpl_t)ibuf->length; |
---|
396 | loudness = LIN2DB(loudness); |
---|
397 | |
---|
398 | if (loudness < threshold) |
---|
399 | return 1.; |
---|
400 | else |
---|
401 | return loudness; |
---|
402 | } |
---|