source: src/mathutils.c @ 8b28524

feature/autosinkfeature/cnnfeature/cnn_orgfeature/constantqfeature/crepefeature/crepe_orgfeature/pitchshiftfeature/pydocstringsfeature/timestretchfix/ffmpeg5pitchshiftsamplertimestretchyinfft+
Last change on this file since 8b28524 was 8b28524, checked in by Paul Brossier <piem@piem.org>, 14 years ago

src/mathutils.c: rename vec_mean to fvec_mean

  • Property mode set to 100644
File size: 11.1 KB
Line 
1/*
2  Copyright (C) 2003-2009 Paul Brossier <piem@aubio.org>
3
4  This file is part of aubio.
5
6  aubio is free software: you can redistribute it and/or modify
7  it under the terms of the GNU General Public License as published by
8  the Free Software Foundation, either version 3 of the License, or
9  (at your option) any later version.
10
11  aubio is distributed in the hope that it will be useful,
12  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  GNU General Public License for more details.
15
16  You should have received a copy of the GNU General Public License
17  along with aubio.  If not, see <http://www.gnu.org/licenses/>.
18
19*/
20
21/* see in mathutils.h for doc */
22
23#include "aubio_priv.h"
24#include "fvec.h"
25#include "mathutils.h"
26#include "config.h"
27
28fvec_t * new_aubio_window(uint_t size, aubio_window_type wintype) {
29  // create fvec of size x 1 channel
30  fvec_t * win = new_fvec( size, 1);
31  smpl_t * w = win->data[0];
32  uint_t i;
33  switch(wintype) {
34    case aubio_win_rectangle:
35      for (i=0;i<size;i++)
36        w[i] = 0.5;
37      break;
38    case aubio_win_hamming:
39      for (i=0;i<size;i++)
40        w[i] = 0.54 - 0.46 * COS(TWO_PI * i / (size));
41      break;
42    case aubio_win_hanning:
43      for (i=0;i<size;i++)
44        w[i] = 0.5 - (0.5 * COS(TWO_PI * i / (size)));
45      break;
46    case aubio_win_hanningz:
47      for (i=0;i<size;i++)
48        w[i] = 0.5 * (1.0 - COS(TWO_PI * i / (size)));
49      break;
50    case aubio_win_blackman:
51      for (i=0;i<size;i++)
52        w[i] = 0.42
53          - 0.50 * COS(    TWO_PI*i/(size-1.0))
54          + 0.08 * COS(2.0*TWO_PI*i/(size-1.0));
55      break;
56    case aubio_win_blackman_harris:
57      for (i=0;i<size;i++)
58        w[i] = 0.35875
59          - 0.48829 * COS(    TWO_PI*i/(size-1.0))
60          + 0.14128 * COS(2.0*TWO_PI*i/(size-1.0))
61          - 0.01168 * COS(3.0*TWO_PI*i/(size-1.0));
62      break;
63    case aubio_win_gaussian:
64      for (i=0;i<size;i++)
65        w[i] = EXP(- 1.0 / SQR(size) * SQR(2.0*i-size));
66      break;
67    case aubio_win_welch:
68      for (i=0;i<size;i++)
69        w[i] = 1.0 - SQR((2*i-size)/(size+1.0));
70      break;
71    case aubio_win_parzen:
72      for (i=0;i<size;i++)
73        w[i] = 1.0 - ABS((2*i-size)/(size+1.0));
74      break;
75    default:
76      break;
77  }
78  return win;
79}
80
81smpl_t aubio_unwrap2pi(smpl_t phase) {
82  /* mod(phase+pi,-2pi)+pi */
83  return phase + TWO_PI * (1. + FLOOR(-(phase+PI)/TWO_PI));
84}
85
86smpl_t fvec_mean(fvec_t *s) {
87  uint_t i,j;
88  smpl_t tmp = 0.0f;
89  for (i=0; i < s->channels; i++)
90    for (j=0; j < s->length; j++)
91      tmp += s->data[i][j];
92  return tmp/(smpl_t)(s->length);
93}
94
95smpl_t vec_sum(fvec_t *s) {
96  uint_t i,j;
97  smpl_t tmp = 0.0f;
98  for (i=0; i < s->channels; i++)
99    for (j=0; j < s->length; j++)
100      tmp += s->data[i][j];
101  return tmp;
102}
103
104smpl_t vec_max(fvec_t *s) {
105  uint_t i,j;
106  smpl_t tmp = 0.0f;
107  for (i=0; i < s->channels; i++)
108    for (j=0; j < s->length; j++)
109      tmp = (tmp > s->data[i][j])? tmp : s->data[i][j];
110  return tmp;
111}
112
113smpl_t vec_min(fvec_t *s) {
114  uint_t i,j;
115  smpl_t tmp = s->data[0][0];
116  for (i=0; i < s->channels; i++)
117    for (j=0; j < s->length; j++)
118      tmp = (tmp < s->data[i][j])? tmp : s->data[i][j]  ;
119  return tmp;
120}
121
122uint_t vec_min_elem(fvec_t *s) {
123  uint_t i,j=0, pos=0.;
124  smpl_t tmp = s->data[0][0];
125  for (i=0; i < s->channels; i++)
126    for (j=0; j < s->length; j++) {
127      pos = (tmp < s->data[i][j])? pos : j;
128      tmp = (tmp < s->data[i][j])? tmp : s->data[i][j]  ;
129    }
130  return pos;
131}
132
133uint_t vec_max_elem(fvec_t *s) {
134  uint_t i,j=0, pos=0.;
135  smpl_t tmp = 0.0f;
136  for (i=0; i < s->channels; i++)
137    for (j=0; j < s->length; j++) {
138      pos = (tmp > s->data[i][j])? pos : j;
139      tmp = (tmp > s->data[i][j])? tmp : s->data[i][j]  ;
140    }
141  return pos;
142}
143
144void vec_shift(fvec_t *s) {
145  uint_t i,j;
146  //smpl_t tmp = 0.0f;
147  for (i=0; i < s->channels; i++)
148    for (j=0; j < s->length / 2 ; j++) {
149      //tmp = s->data[i][j];
150      //s->data[i][j] = s->data[i][j+s->length/2];
151      //s->data[i][j+s->length/2] = tmp;
152      ELEM_SWAP(s->data[i][j],s->data[i][j+s->length/2]);
153    }
154}
155
156smpl_t vec_local_energy(fvec_t * f) {
157  smpl_t locE = 0.;
158  uint_t i,j;
159  for (i=0;i<f->channels;i++)
160    for (j=0;j<f->length;j++)
161      locE+=SQR(f->data[i][j]);
162  return locE;
163}
164
165smpl_t vec_local_hfc(fvec_t * f) {
166  smpl_t locE = 0.;
167  uint_t i,j;
168  for (i=0;i<f->channels;i++)
169    for (j=0;j<f->length;j++)
170      locE+=(i+1)*f->data[i][j];
171  return locE;
172}
173
174smpl_t vec_alpha_norm(fvec_t * DF, smpl_t alpha) {
175  smpl_t tmp = 0.;
176  uint_t i,j;
177  for (i=0;i<DF->channels;i++)
178    for (j=0;j<DF->length;j++)
179      tmp += POW(ABS(DF->data[i][j]),alpha);
180  return POW(tmp/DF->length,1./alpha);
181}
182
183void vec_dc_removal(fvec_t * mag) {
184    smpl_t mini = 0.;
185    uint_t length = mag->length, i=0, j;
186    mini = vec_min(mag);
187    for (j=0;j<length;j++) {
188      mag->data[i][j] -= mini;
189    }
190}
191
192void vec_alpha_normalise(fvec_t * mag, uint_t alpha) {
193  smpl_t alphan = 1.;
194  uint_t length = mag->length, i=0, j;
195  alphan = vec_alpha_norm(mag,alpha);
196  for (j=0;j<length;j++){
197    mag->data[i][j] /= alphan;
198  }
199}
200
201void vec_add(fvec_t * mag, smpl_t threshold) {
202  uint_t length = mag->length, i=0, j;
203  for (j=0;j<length;j++) {
204    mag->data[i][j] += threshold;
205  }
206}
207
208void vec_adapt_thres(fvec_t * vec, fvec_t * tmp,
209    uint_t post, uint_t pre) {
210  uint_t length = vec->length, i=0, j;
211  for (j=0;j<length;j++) {
212    vec->data[i][j] -= vec_moving_thres(vec, tmp, post, pre, j);
213  }
214}
215
216smpl_t vec_moving_thres(fvec_t * vec, fvec_t * tmpvec,
217    uint_t post, uint_t pre, uint_t pos) {
218  smpl_t * medar = (smpl_t *)tmpvec->data[0];
219  uint_t k;
220  uint_t win_length =  post+pre+1;
221  uint_t length =  vec->length;
222  /* post part of the buffer does not exist */
223  if (pos<post+1) {
224    for (k=0;k<post+1-pos;k++)
225      medar[k] = 0.; /* 0-padding at the beginning */
226    for (k=post+1-pos;k<win_length;k++)
227      medar[k] = vec->data[0][k+pos-post];
228  /* the buffer is fully defined */
229  } else if (pos+pre<length) {
230    for (k=0;k<win_length;k++)
231      medar[k] = vec->data[0][k+pos-post];
232  /* pre part of the buffer does not exist */
233  } else {
234    for (k=0;k<length-pos+post;k++)
235      medar[k] = vec->data[0][k+pos-post];
236    for (k=length-pos+post;k<win_length;k++)
237      medar[k] = 0.; /* 0-padding at the end */
238  }
239  return vec_median(tmpvec);
240}
241
242smpl_t vec_median(fvec_t * input) {
243  uint_t n = input->length;
244  smpl_t * arr = (smpl_t *) input->data[0];
245  uint_t low, high ;
246  uint_t median;
247  uint_t middle, ll, hh;
248
249  low = 0 ; high = n-1 ; median = (low + high) / 2;
250  for (;;) {
251    if (high <= low) /* One element only */
252      return arr[median] ;
253
254    if (high == low + 1) {  /* Two elements only */
255      if (arr[low] > arr[high])
256        ELEM_SWAP(arr[low], arr[high]) ;
257      return arr[median] ;
258    }
259
260    /* Find median of low, middle and high items; swap into position low */
261    middle = (low + high) / 2;
262    if (arr[middle] > arr[high])    ELEM_SWAP(arr[middle], arr[high]);
263    if (arr[low]    > arr[high])    ELEM_SWAP(arr[low],    arr[high]);
264    if (arr[middle] > arr[low])     ELEM_SWAP(arr[middle], arr[low]) ;
265
266    /* Swap low item (now in position middle) into position (low+1) */
267    ELEM_SWAP(arr[middle], arr[low+1]) ;
268
269    /* Nibble from each end towards middle, swapping items when stuck */
270    ll = low + 1;
271    hh = high;
272    for (;;) {
273      do ll++; while (arr[low] > arr[ll]) ;
274      do hh--; while (arr[hh]  > arr[low]) ;
275
276      if (hh < ll)
277        break;
278
279      ELEM_SWAP(arr[ll], arr[hh]) ;
280    }
281
282    /* Swap middle item (in position low) back into correct position */
283    ELEM_SWAP(arr[low], arr[hh]) ;
284
285    /* Re-set active partition */
286    if (hh <= median)
287      low = ll;
288    if (hh >= median)
289      high = hh - 1;
290  }
291}
292
293smpl_t vec_quadint(fvec_t * x,uint_t pos, uint_t span) {
294  smpl_t s0, s1, s2;
295  uint_t x0 = (pos < span) ? pos : pos - span;
296  uint_t x2 = (pos + span < x->length) ? pos + span : pos;
297  if (x0 == pos) return (x->data[0][pos] <= x->data[0][x2]) ? pos : x2;
298  if (x2 == pos) return (x->data[0][pos] <= x->data[0][x0]) ? pos : x0;
299  s0 = x->data[0][x0];
300  s1 = x->data[0][pos]     ;
301  s2 = x->data[0][x2];
302  return pos + 0.5 * (s2 - s0 ) / (s2 - 2.* s1 + s0);
303}
304
305smpl_t aubio_quadfrac(smpl_t s0, smpl_t s1, smpl_t s2, smpl_t pf) {
306  smpl_t tmp = s0 + (pf/2.) * (pf * ( s0 - 2.*s1 + s2 ) - 3.*s0 + 4.*s1 - s2);
307  return tmp;
308}
309
310uint_t vec_peakpick(fvec_t * onset, uint_t pos) {
311  uint_t i=0, tmp=0;
312  /*for (i=0;i<onset->channels;i++)*/
313  tmp = (onset->data[i][pos] > onset->data[i][pos-1]
314      &&  onset->data[i][pos] > onset->data[i][pos+1]
315      &&  onset->data[i][pos] > 0.);
316  return tmp;
317}
318
319smpl_t aubio_freqtomidi(smpl_t freq) {
320  /* log(freq/A-2)/log(2) */
321  smpl_t midi = freq/6.875;
322  midi = LOG(midi)/0.69314718055995;
323  midi *= 12;
324  midi -= 3;
325  return midi;
326}
327
328smpl_t aubio_miditofreq(smpl_t midi) {
329  smpl_t freq = (midi+3.)/12.;
330  freq = EXP(freq*0.69314718055995);
331  freq *= 6.875;
332  return freq;
333}
334
335smpl_t aubio_bintofreq(smpl_t bin, smpl_t samplerate, smpl_t fftsize) {
336  smpl_t freq = samplerate/fftsize;
337  return freq*bin;
338}
339
340smpl_t aubio_bintomidi(smpl_t bin, smpl_t samplerate, smpl_t fftsize) {
341  smpl_t midi = aubio_bintofreq(bin,samplerate,fftsize);
342  return aubio_freqtomidi(midi);
343}
344
345smpl_t aubio_freqtobin(smpl_t freq, smpl_t samplerate, smpl_t fftsize) {
346  smpl_t bin = fftsize/samplerate;
347  return freq*bin;
348}
349
350smpl_t aubio_miditobin(smpl_t midi, smpl_t samplerate, smpl_t fftsize) {
351  smpl_t freq = aubio_miditofreq(midi);
352  return aubio_freqtobin(freq,samplerate,fftsize);
353}
354
355/** returns 1 if wassilence is 0 and RMS(ibuf)<threshold
356 * \bug mono
357 */
358uint_t aubio_silence_detection(fvec_t * ibuf, smpl_t threshold) {
359  smpl_t loudness = 0;
360  uint_t i=0,j;
361  for (j=0;j<ibuf->length;j++) {
362    loudness += SQR(ibuf->data[i][j]);
363  }
364  loudness = SQRT(loudness);
365  loudness /= (smpl_t)ibuf->length;
366  loudness = LIN2DB(loudness);
367
368  return (loudness < threshold);
369}
370
371/** returns level log(RMS(ibuf)) if < threshold, 1 otherwise
372 * \bug mono
373 */
374smpl_t aubio_level_detection(fvec_t * ibuf, smpl_t threshold) {
375  smpl_t loudness = 0;
376  uint_t i=0,j;
377  for (j=0;j<ibuf->length;j++) {
378    loudness += SQR(ibuf->data[i][j]);
379  }
380  loudness = SQRT(loudness);
381  loudness /= (smpl_t)ibuf->length;
382  loudness = LIN2DB(loudness);
383
384  if (loudness < threshold)
385    return 1.;
386  else
387    return loudness;
388}
389
390smpl_t aubio_zero_crossing_rate(fvec_t * input) {
391  uint_t i=0,j;
392  uint_t zcr = 0;
393  for ( j = 1; j < input->length; j++ ) {
394    // previous was strictly negative
395    if( input->data[i][j-1] < 0. ) {
396      // current is positive or null
397      if ( input->data[i][j] >= 0. ) {
398        zcr += 1;
399      }
400    // previous was positive or null
401    } else {
402      // current is strictly negative
403      if ( input->data[i][j] < 0. ) {
404        zcr += 1;
405      }
406    }
407  }
408  return zcr/(smpl_t)input->length;
409}
410
411void aubio_autocorr(fvec_t * input, fvec_t * output) {
412  uint_t i = 0, j = 0, length = input->length;
413  smpl_t * data = input->data[0];
414  smpl_t * acf = output->data[0];
415  smpl_t tmp =0.;
416  for(i=0;i<length;i++){
417    for(j=i;j<length;j++){
418      tmp += data[j-i]*data[j];
419    }
420    acf[i] = tmp /(smpl_t)(length-i);
421    tmp = 0.0;
422  }
423}
424
425void aubio_cleanup(void) {
426#if HAVE_FFTW3
427  fftw_cleanup();
428#else
429#if HAVE_FFTW3F
430  fftwf_cleanup();
431#endif
432#endif
433}
Note: See TracBrowser for help on using the repository browser.