[57630f6] | 1 | /* |
---|
| 2 | Copyright (C) 2018 Paul Brossier <piem@aubio.org> |
---|
| 3 | |
---|
| 4 | This file is part of aubio. |
---|
| 5 | |
---|
| 6 | aubio is free software: you can redistribute it and/or modify |
---|
| 7 | it under the terms of the GNU General Public License as published by |
---|
| 8 | the Free Software Foundation, either version 3 of the License, or |
---|
| 9 | (at your option) any later version. |
---|
| 10 | |
---|
| 11 | aubio is distributed in the hope that it will be useful, |
---|
| 12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
| 13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
| 14 | GNU General Public License for more details. |
---|
| 15 | |
---|
| 16 | You should have received a copy of the GNU General Public License |
---|
| 17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
| 18 | |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | /* CREPE pitch algorithm |
---|
| 22 | |
---|
| 23 | References |
---|
| 24 | ---------- |
---|
| 25 | |
---|
| 26 | CREPE: A Convolutional Representation for Pitch Estimation Jong Wook Kim, |
---|
| 27 | Justin Salamon, Peter Li, Juan Pablo Bello. Proceedings of the IEEE |
---|
| 28 | International Conference on Acoustics, Speech, and Signal Processing (ICASSP), |
---|
| 29 | 2018. Available online at https://arxiv.org/abs/1802.06182 |
---|
| 30 | |
---|
| 31 | Original implementation available at https://github.com/marl/crepe |
---|
| 32 | |
---|
| 33 | */ |
---|
| 34 | |
---|
| 35 | #include "aubio_priv.h" |
---|
| 36 | |
---|
| 37 | #include "fmat.h" |
---|
| 38 | #include "ai/tensor.h" |
---|
| 39 | #include "ai/conv1d.h" |
---|
| 40 | #include "ai/maxpool1d.h" |
---|
| 41 | #include "ai/batchnorm.h" |
---|
| 42 | #include "ai/dense.h" |
---|
| 43 | #include "io/file_hdf5.h" |
---|
| 44 | #include "utils/scale.h" |
---|
| 45 | |
---|
| 46 | #define HDF5_FILE_PATH "crepe-model-tiny.h5" |
---|
| 47 | |
---|
| 48 | // public prototypes |
---|
| 49 | typedef struct _aubio_pitch_crepe_t aubio_pitch_crepe_t; |
---|
| 50 | aubio_pitch_crepe_t *new_aubio_pitch_crepe(void); |
---|
| 51 | void aubio_pitch_crepe_do(aubio_pitch_crepe_t *t, fvec_t *input, fvec_t *out); |
---|
| 52 | void del_aubio_pitch_crepe(aubio_pitch_crepe_t *t); |
---|
| 53 | smpl_t aubio_pitch_crepe_get_confidence (aubio_pitch_crepe_t * o); |
---|
| 54 | uint_t aubio_pitch_crepe_set_tolerance(aubio_pitch_crepe_t * o, smpl_t |
---|
| 55 | tolerance); |
---|
| 56 | smpl_t aubio_pitch_crepe_get_tolerance (aubio_pitch_crepe_t * o); |
---|
| 57 | |
---|
| 58 | // static prototypes |
---|
| 59 | static uint_t aubio_pitch_crepe_load_params(aubio_pitch_crepe_t *o); |
---|
| 60 | |
---|
| 61 | struct _aubio_pitch_crepe_t |
---|
| 62 | { |
---|
| 63 | // number of [conv, maxpool, batchnorm] groups |
---|
| 64 | uint_t n_layers; |
---|
| 65 | // layers |
---|
| 66 | aubio_conv1d_t **conv_layers; |
---|
| 67 | aubio_maxpool1d_t **maxpool_layers; |
---|
| 68 | aubio_batchnorm_t **batchnorm_layers; |
---|
| 69 | aubio_dense_t *dense_layer; |
---|
| 70 | // input/output tensors |
---|
| 71 | aubio_tensor_t *input_tensor; |
---|
| 72 | aubio_tensor_t **maxpool_output; |
---|
| 73 | aubio_tensor_t **batchnorm_output; |
---|
| 74 | aubio_tensor_t **conv_output; |
---|
| 75 | aubio_tensor_t *flattened; |
---|
| 76 | aubio_tensor_t *dense_output; |
---|
| 77 | |
---|
| 78 | smpl_t confidence; |
---|
| 79 | smpl_t tolerance; |
---|
| 80 | aubio_scale_t *scale; |
---|
| 81 | }; |
---|
| 82 | |
---|
| 83 | aubio_pitch_crepe_t *new_aubio_pitch_crepe(void) |
---|
| 84 | { |
---|
| 85 | aubio_pitch_crepe_t *o = AUBIO_NEW(aubio_pitch_crepe_t); |
---|
| 86 | aubio_tensor_t *block_input; |
---|
| 87 | // algorithm constants |
---|
| 88 | uint_t input_shape[2] = {1024, 1}; |
---|
| 89 | uint_t capacity_modes[5] = {4, 8, 16, 24, 32}; |
---|
| 90 | uint_t n_filters[6] = {32, 4, 4, 4, 8, 16}; |
---|
| 91 | uint_t widths[6] = {512, 64, 64, 64, 64, 64}; |
---|
| 92 | uint_t maxpool_stride[1] = {2}; |
---|
| 93 | uint_t l0_stride[1] = {4}; |
---|
| 94 | uint_t n_dense = 360; |
---|
| 95 | |
---|
| 96 | // local variables |
---|
| 97 | uint_t capacity_mode = 0; |
---|
| 98 | uint_t capacity = capacity_modes[capacity_mode]; |
---|
| 99 | uint_t output_shape[2]; |
---|
| 100 | uint_t i; |
---|
| 101 | |
---|
[dd4e5d5] | 102 | #if defined(HAVE_BLAS) && defined(HAVE_OPENBLAS_CBLAS_H) |
---|
| 103 | // workaround to prevent openblas from opening multiple threads, since |
---|
| 104 | // the overhead appears to be higher than using a single thread. |
---|
| 105 | openblas_set_num_threads(1); |
---|
| 106 | #endif |
---|
| 107 | |
---|
[57630f6] | 108 | AUBIO_ASSERT (capacity_mode < 5 && (sint_t)capacity_mode >= 0); |
---|
| 109 | |
---|
| 110 | o->n_layers = 6; |
---|
| 111 | // create arrays of layers and tensors |
---|
| 112 | o->conv_layers = AUBIO_ARRAY(aubio_conv1d_t*, o->n_layers); |
---|
| 113 | o->conv_output = AUBIO_ARRAY(aubio_tensor_t*, o->n_layers); |
---|
| 114 | o->maxpool_layers = AUBIO_ARRAY(aubio_maxpool1d_t*, o->n_layers); |
---|
| 115 | o->maxpool_output = AUBIO_ARRAY(aubio_tensor_t*, o->n_layers); |
---|
| 116 | o->batchnorm_layers = AUBIO_ARRAY(aubio_batchnorm_t*, o->n_layers); |
---|
| 117 | o->batchnorm_output = AUBIO_ARRAY(aubio_tensor_t*, o->n_layers); |
---|
| 118 | |
---|
| 119 | if (!o->conv_layers || !o->conv_output |
---|
| 120 | || !o->maxpool_layers || !o->maxpool_output |
---|
| 121 | || !o->batchnorm_layers || !o->batchnorm_output) |
---|
| 122 | goto failure; |
---|
| 123 | |
---|
| 124 | // create layers |
---|
| 125 | for (i = 0; i < o->n_layers; i++) { |
---|
| 126 | uint_t kern_shape[1] = {widths[i]}; |
---|
| 127 | // create convolutional layers |
---|
| 128 | o->conv_layers[i] = new_aubio_conv1d(n_filters[i] * capacity, kern_shape); |
---|
| 129 | if (!o->conv_layers[i]) goto failure; |
---|
| 130 | // set padding='same' |
---|
| 131 | if (aubio_conv1d_set_padding_mode(o->conv_layers[i], "same") != AUBIO_OK) { |
---|
| 132 | goto failure; |
---|
| 133 | } |
---|
| 134 | // set stride of first layer |
---|
| 135 | if ((i == 0) && (aubio_conv1d_set_stride(o->conv_layers[0], |
---|
| 136 | l0_stride) != AUBIO_OK) ) { |
---|
| 137 | goto failure; |
---|
| 138 | } |
---|
| 139 | |
---|
| 140 | // create batchnorm layers |
---|
| 141 | o->batchnorm_layers[i] = new_aubio_batchnorm(n_filters[i] * capacity); |
---|
| 142 | if (!o->batchnorm_layers[i]) goto failure; |
---|
| 143 | |
---|
| 144 | // create maxpool layers |
---|
| 145 | o->maxpool_layers[i] = new_aubio_maxpool1d(maxpool_stride); |
---|
| 146 | if (!o->maxpool_layers[i]) goto failure; |
---|
| 147 | } |
---|
| 148 | |
---|
| 149 | o->dense_layer = new_aubio_dense(n_dense); |
---|
| 150 | if (!o->dense_layer) goto failure; |
---|
| 151 | |
---|
| 152 | // create input/output tensors |
---|
| 153 | o->input_tensor = new_aubio_tensor(2, input_shape); |
---|
| 154 | if (!o->input_tensor) goto failure; |
---|
| 155 | block_input = o->input_tensor; |
---|
| 156 | for (i = 0; i < o->n_layers; i++) { |
---|
| 157 | // get shape of conv1d output and create its tensor |
---|
| 158 | if (aubio_conv1d_get_output_shape(o->conv_layers[i], |
---|
| 159 | block_input, output_shape)) |
---|
| 160 | goto failure; |
---|
| 161 | o->conv_output[i] = new_aubio_tensor(2, output_shape); |
---|
| 162 | if (!o->conv_output[i]) goto failure; |
---|
| 163 | |
---|
| 164 | // get shape of batchnorm output and create its tensor |
---|
| 165 | if (aubio_batchnorm_get_output_shape(o->batchnorm_layers[i], |
---|
| 166 | o->conv_output[i], output_shape)) |
---|
| 167 | goto failure; |
---|
| 168 | o->batchnorm_output[i] = new_aubio_tensor(2, output_shape); |
---|
| 169 | if (!o->batchnorm_output[i]) goto failure; |
---|
| 170 | |
---|
| 171 | // get shape of maxpool1d output and create its tensor |
---|
| 172 | if (aubio_maxpool1d_get_output_shape(o->maxpool_layers[i], |
---|
| 173 | o->batchnorm_output[i], output_shape)) |
---|
| 174 | goto failure; |
---|
| 175 | o->maxpool_output[i] = new_aubio_tensor(2, output_shape); |
---|
| 176 | if (!o->maxpool_output[i]) goto failure; |
---|
| 177 | |
---|
| 178 | // set input for next block |
---|
| 179 | block_input = o->maxpool_output[i]; |
---|
| 180 | } |
---|
| 181 | |
---|
| 182 | uint_t flattened_dim = o->maxpool_output[5]->shape[0]; |
---|
| 183 | flattened_dim *= o->maxpool_output[5]->shape[1]; |
---|
| 184 | uint_t dense_input[1] = {flattened_dim}; |
---|
| 185 | o->flattened = new_aubio_tensor(1, dense_input); |
---|
| 186 | if (!o->flattened) goto failure; |
---|
| 187 | |
---|
| 188 | // permute and flatten |
---|
| 189 | aubio_tensor_t *permute_input = o->maxpool_output[5]; |
---|
| 190 | AUBIO_DBG("permute: (%d, %d) ->" |
---|
| 191 | " (%d, %d) (permutation=(2, 1))\n", |
---|
| 192 | permute_input->shape[0], permute_input->shape[1], |
---|
| 193 | permute_input->shape[1], permute_input->shape[0]); |
---|
| 194 | AUBIO_DBG("flatten: (%d, %d) -> (%d)\n", |
---|
| 195 | permute_input->shape[1], permute_input->shape[0], |
---|
| 196 | o->flattened->shape[0]); |
---|
| 197 | |
---|
| 198 | if (aubio_dense_get_output_shape(o->dense_layer, o->flattened, output_shape)) |
---|
| 199 | goto failure; |
---|
| 200 | o->dense_output = new_aubio_tensor(1, output_shape); |
---|
| 201 | if (!o->dense_output) goto failure; |
---|
| 202 | |
---|
| 203 | AUBIO_ASSERT(n_dense == output_shape[0]); |
---|
| 204 | |
---|
| 205 | if (aubio_pitch_crepe_load_params(o)) |
---|
| 206 | goto failure; |
---|
| 207 | |
---|
| 208 | // map output units to midi note |
---|
| 209 | smpl_t start = 1997.379408437619; |
---|
| 210 | smpl_t end = 7180.; |
---|
| 211 | o->scale = new_aubio_scale(0., 359., start, start + end); |
---|
| 212 | if (!o->scale) goto failure; |
---|
| 213 | |
---|
| 214 | return o; |
---|
| 215 | |
---|
| 216 | failure: |
---|
| 217 | del_aubio_pitch_crepe(o); |
---|
| 218 | return NULL; |
---|
| 219 | } |
---|
| 220 | |
---|
| 221 | void del_aubio_pitch_crepe(aubio_pitch_crepe_t *o) |
---|
| 222 | { |
---|
| 223 | uint_t i; |
---|
| 224 | AUBIO_ASSERT(o); |
---|
| 225 | |
---|
| 226 | if (o->input_tensor) { |
---|
| 227 | del_aubio_tensor(o->input_tensor); |
---|
| 228 | } |
---|
| 229 | |
---|
| 230 | if (o->batchnorm_output) { |
---|
| 231 | for (i = 0; i < o->n_layers; i++) { |
---|
| 232 | if (o->batchnorm_output[i]) |
---|
| 233 | del_aubio_tensor(o->batchnorm_output[i]); |
---|
| 234 | } |
---|
| 235 | AUBIO_FREE(o->batchnorm_output); |
---|
| 236 | } |
---|
| 237 | |
---|
| 238 | if (o->batchnorm_layers) { |
---|
| 239 | for (i = 0; i < o->n_layers; i++) { |
---|
| 240 | if (o->batchnorm_layers[i]) |
---|
| 241 | del_aubio_batchnorm(o->batchnorm_layers[i]); |
---|
| 242 | } |
---|
| 243 | AUBIO_FREE(o->batchnorm_layers); |
---|
| 244 | } |
---|
| 245 | |
---|
| 246 | if (o->maxpool_output) { |
---|
| 247 | for (i = 0; i < o->n_layers; i++) { |
---|
| 248 | if (o->maxpool_output[i]) |
---|
| 249 | del_aubio_tensor(o->maxpool_output[i]); |
---|
| 250 | } |
---|
| 251 | AUBIO_FREE(o->maxpool_output); |
---|
| 252 | } |
---|
| 253 | |
---|
| 254 | if (o->maxpool_layers) { |
---|
| 255 | for (i = 0; i < o->n_layers; i++) { |
---|
| 256 | if (o->maxpool_layers[i]) |
---|
| 257 | del_aubio_maxpool1d(o->maxpool_layers[i]); |
---|
| 258 | } |
---|
| 259 | AUBIO_FREE(o->maxpool_layers); |
---|
| 260 | } |
---|
| 261 | |
---|
| 262 | if (o->conv_output) { |
---|
| 263 | for (i = 0; i < o->n_layers; i++) { |
---|
| 264 | if (o->conv_output[i]) |
---|
| 265 | del_aubio_tensor(o->conv_output[i]); |
---|
| 266 | } |
---|
| 267 | AUBIO_FREE(o->conv_output); |
---|
| 268 | } |
---|
| 269 | |
---|
| 270 | if (o->conv_layers) { |
---|
| 271 | for (i = 0; i < o->n_layers; i++) { |
---|
| 272 | if (o->conv_layers[i]) |
---|
| 273 | del_aubio_conv1d(o->conv_layers[i]); |
---|
| 274 | } |
---|
| 275 | AUBIO_FREE(o->conv_layers); |
---|
| 276 | } |
---|
| 277 | |
---|
| 278 | if (o->flattened) { |
---|
| 279 | del_aubio_tensor(o->flattened); |
---|
| 280 | } |
---|
| 281 | |
---|
| 282 | if (o->dense_layer) { |
---|
| 283 | del_aubio_dense(o->dense_layer); |
---|
| 284 | } |
---|
| 285 | |
---|
| 286 | if (o->dense_output) { |
---|
| 287 | del_aubio_tensor(o->dense_output); |
---|
| 288 | } |
---|
| 289 | |
---|
| 290 | if (o->scale) { |
---|
| 291 | del_aubio_scale(o->scale); |
---|
| 292 | } |
---|
| 293 | |
---|
| 294 | AUBIO_FREE(o); |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | void aubio_pitch_crepe_do(aubio_pitch_crepe_t *o, fvec_t *input, fvec_t *out) |
---|
| 298 | { |
---|
| 299 | uint_t i; |
---|
| 300 | AUBIO_ASSERT(o && input); |
---|
| 301 | // copy input to input tensor |
---|
| 302 | AUBIO_ASSERT(input->length == o->input_tensor->shape[0]); |
---|
| 303 | // normalize frame, removing mean and dividing by std |
---|
| 304 | smpl_t mean = fvec_mean(input); |
---|
| 305 | fvec_add(input, -mean); |
---|
| 306 | smpl_t std = 0.; |
---|
| 307 | for (i = 0; i < input->length; i++) { |
---|
| 308 | std += SQR(input->data[i]); |
---|
| 309 | } |
---|
| 310 | std = SQRT(std / (smpl_t)input->length); |
---|
| 311 | if (std < 1.e-7) std = 1; |
---|
| 312 | |
---|
| 313 | for (i = 0; i < input->length; i++) { |
---|
| 314 | o->input_tensor->data[0][i] = input->data[i] / std; |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | aubio_tensor_t *block_input = o->input_tensor; |
---|
| 318 | for (i = 0; i < o->n_layers; i++) { |
---|
| 319 | aubio_conv1d_do(o->conv_layers[i], block_input, |
---|
| 320 | o->conv_output[i]); |
---|
| 321 | aubio_batchnorm_do(o->batchnorm_layers[i], o->conv_output[i], |
---|
| 322 | o->batchnorm_output[i]); |
---|
| 323 | aubio_maxpool1d_do(o->maxpool_layers[i], o->batchnorm_output[i], |
---|
| 324 | o->maxpool_output[i]); |
---|
| 325 | block_input = o->maxpool_output[i]; |
---|
| 326 | } |
---|
| 327 | |
---|
| 328 | aubio_tensor_t *permute_input = o->maxpool_output[5]; |
---|
| 329 | // perform flattening (permutation has no effect here, order unchanged) |
---|
| 330 | AUBIO_ASSERT (permute_input->size == o->flattened->size); |
---|
| 331 | for (i = 0; i < permute_input->size; i++) { |
---|
| 332 | o->flattened->data[0][i] = permute_input->data[0][i]; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | // compute dense layer |
---|
| 336 | aubio_dense_do(o->dense_layer, o->flattened, o->dense_output); |
---|
| 337 | |
---|
| 338 | #if 0 |
---|
| 339 | // print debug output |
---|
| 340 | for (i = 0; i < o->n_layers; i++) { |
---|
| 341 | AUBIO_DBG("pitch_crepe: conv1d[%d] %f\n", i, |
---|
| 342 | aubio_tensor_max(o->conv_output[i])); |
---|
| 343 | AUBIO_DBG("pitch_crepe: batchnorm[%d] %f\n", i, |
---|
| 344 | aubio_tensor_max(o->batchnorm_output[i])); |
---|
| 345 | AUBIO_DBG("pitch_crepe: maxpool1d[%d] %f\n", i, |
---|
| 346 | aubio_tensor_max(o->maxpool_output[i])); |
---|
| 347 | } |
---|
| 348 | AUBIO_DBG("pitch_crepe: dense %f\n", aubio_tensor_max(o->dense_output)); |
---|
| 349 | #endif |
---|
| 350 | |
---|
| 351 | // find maximum activation |
---|
| 352 | fvec_t activations; |
---|
| 353 | aubio_tensor_as_fvec(o->dense_output, &activations); |
---|
| 354 | uint_t argmax = fvec_max_elem(&activations); |
---|
| 355 | o->confidence = activations.data[argmax]; |
---|
| 356 | |
---|
| 357 | // skip frames with no activation at all (e.g. silence) |
---|
| 358 | // or with insufficient confidence |
---|
| 359 | if ((argmax == activations.length - 1) |
---|
| 360 | || (o->confidence < o->tolerance)) { |
---|
| 361 | out->data[0] = -100.; |
---|
| 362 | o->confidence = 0; |
---|
| 363 | return; |
---|
| 364 | } |
---|
| 365 | |
---|
| 366 | // perform interpolation across neighbouring outputs |
---|
| 367 | sint_t start = MAX(0, (sint_t)argmax - 4); |
---|
| 368 | uint_t end = MIN(argmax + 5, activations.length); |
---|
| 369 | |
---|
| 370 | smpl_t prod = 0; |
---|
| 371 | smpl_t weight = 0; |
---|
| 372 | smpl_t scaling = 0; |
---|
| 373 | for (i = start; i < end; i++) { |
---|
| 374 | scaling = (smpl_t)(i); |
---|
| 375 | prod += activations.data[i] * scaling; |
---|
| 376 | weight += activations.data[i]; |
---|
| 377 | } |
---|
| 378 | out->data[0] = prod / weight; |
---|
| 379 | |
---|
| 380 | // map output units to midi output |
---|
| 381 | aubio_scale_do(o->scale, out); |
---|
| 382 | |
---|
| 383 | // convert cents to midi |
---|
| 384 | out->data[0] /= 100.; |
---|
| 385 | |
---|
| 386 | // final bias (f_ref = 10Hz -> 3.48 midi) |
---|
| 387 | out->data[0] += 3.486821174621582; |
---|
| 388 | } |
---|
| 389 | |
---|
| 390 | smpl_t aubio_pitch_crepe_get_confidence (aubio_pitch_crepe_t* o) |
---|
| 391 | { |
---|
| 392 | return o->confidence; |
---|
| 393 | } |
---|
| 394 | |
---|
| 395 | uint_t aubio_pitch_crepe_set_tolerance(aubio_pitch_crepe_t * o, |
---|
| 396 | smpl_t tolerance) |
---|
| 397 | { |
---|
| 398 | if (o->tolerance < 0 || o->tolerance > 1) return AUBIO_FAIL; |
---|
| 399 | o->tolerance = tolerance; |
---|
| 400 | return AUBIO_OK; |
---|
| 401 | } |
---|
| 402 | |
---|
| 403 | smpl_t aubio_pitch_crepe_get_tolerance (aubio_pitch_crepe_t * o) |
---|
| 404 | { |
---|
| 405 | return o->tolerance; |
---|
| 406 | } |
---|
| 407 | |
---|
| 408 | uint_t aubio_pitch_crepe_load_params(aubio_pitch_crepe_t *o) |
---|
| 409 | { |
---|
| 410 | uint_t i; |
---|
| 411 | aubio_tensor_t *k = NULL; |
---|
| 412 | fvec_t *vec = NULL; |
---|
| 413 | |
---|
| 414 | AUBIO_ASSERT(o); |
---|
| 415 | |
---|
| 416 | aubio_file_hdf5_t *hdf5 = new_aubio_file_hdf5(HDF5_FILE_PATH); |
---|
| 417 | if (!hdf5) return AUBIO_FAIL; |
---|
| 418 | |
---|
| 419 | // get kernels |
---|
| 420 | for (i = 0; i < o->n_layers; i++) { |
---|
| 421 | char_t *fmt_key = "/conv%d/conv%d_3/kernel:0"; |
---|
| 422 | char_t key[PATH_MAX]; |
---|
| 423 | snprintf(key, sizeof(key), fmt_key, i+1, i+1); |
---|
| 424 | k = aubio_conv1d_get_kernel(o->conv_layers[i]); |
---|
| 425 | |
---|
| 426 | // push dimension |
---|
| 427 | k->shape[3] = k->shape[2]; k->shape[2] = k->shape[1]; k->shape[1] = 1; |
---|
| 428 | k->ndim += 1; |
---|
| 429 | // load params from hdf5 into kernel tensor |
---|
| 430 | if (aubio_file_hdf5_load_dataset_into_tensor(hdf5, key, k)) |
---|
| 431 | return AUBIO_FAIL; |
---|
| 432 | // pop dimension |
---|
| 433 | k->shape[1] = k->shape[2]; k->shape[2] = k->shape[3]; k->shape[3] = 0; |
---|
| 434 | k->ndim -= 1; |
---|
| 435 | } |
---|
| 436 | |
---|
| 437 | // get bias vectors |
---|
| 438 | for (i = 0; i < o->n_layers; i++) { |
---|
| 439 | char_t *fmt_key = "/conv%d/conv%d_3/bias:0"; |
---|
| 440 | char_t key[PATH_MAX]; |
---|
| 441 | snprintf(key, sizeof(key), fmt_key, i+1, i+1); |
---|
| 442 | vec = aubio_conv1d_get_bias(o->conv_layers[i]); |
---|
| 443 | // load params from hdf5 into kernel tensor |
---|
| 444 | if (aubio_file_hdf5_load_dataset_into_vector(hdf5, key, vec)) |
---|
| 445 | return AUBIO_FAIL; |
---|
| 446 | } |
---|
| 447 | |
---|
| 448 | // batchnorm |
---|
| 449 | for (i = 0; i < o->n_layers; i++) { |
---|
| 450 | char_t *fmt_key = "/conv%d-BN/conv%d-BN_3/gamma:0"; |
---|
| 451 | char_t key[PATH_MAX]; |
---|
| 452 | snprintf(key, sizeof(key), fmt_key, i+1, i+1); |
---|
| 453 | // get kernel matrix |
---|
| 454 | vec = aubio_batchnorm_get_gamma(o->batchnorm_layers[i]); |
---|
| 455 | // load params from hdf5 into kernel tensor |
---|
| 456 | if (aubio_file_hdf5_load_dataset_into_vector(hdf5, key, vec)) |
---|
| 457 | return AUBIO_FAIL; |
---|
| 458 | } |
---|
| 459 | for (i = 0; i < o->n_layers; i++) { |
---|
| 460 | char_t *fmt_key = "/conv%d-BN/conv%d-BN_3/beta:0"; |
---|
| 461 | char_t key[PATH_MAX]; |
---|
| 462 | snprintf(key, sizeof(key), fmt_key, i+1, i+1); |
---|
| 463 | // get kernel matrix |
---|
| 464 | vec = aubio_batchnorm_get_beta(o->batchnorm_layers[i]); |
---|
| 465 | // load params from hdf5 into kernel tensor |
---|
| 466 | if (aubio_file_hdf5_load_dataset_into_vector(hdf5, key, vec)) |
---|
| 467 | return AUBIO_FAIL; |
---|
| 468 | } |
---|
| 469 | for (i = 0; i < o->n_layers; i++) { |
---|
| 470 | char_t *fmt_key = "/conv%d-BN/conv%d-BN_3/moving_mean:0"; |
---|
| 471 | char_t key[PATH_MAX]; |
---|
| 472 | snprintf(key, sizeof(key), fmt_key, i+1, i+1); |
---|
| 473 | // get kernel matrix |
---|
| 474 | vec = aubio_batchnorm_get_moving_mean(o->batchnorm_layers[i]); |
---|
| 475 | // load params from hdf5 into kernel tensor |
---|
| 476 | if (aubio_file_hdf5_load_dataset_into_vector(hdf5, key, vec)) |
---|
| 477 | return AUBIO_FAIL; |
---|
| 478 | } |
---|
| 479 | for (i = 0; i < o->n_layers; i++) { |
---|
| 480 | char_t *fmt_key = "/conv%d-BN/conv%d-BN_3/moving_variance:0"; |
---|
| 481 | char_t key[PATH_MAX]; |
---|
| 482 | snprintf(key, sizeof(key), fmt_key, i+1, i+1); |
---|
| 483 | // get kernel matrix |
---|
| 484 | vec = aubio_batchnorm_get_moving_variance(o->batchnorm_layers[i]); |
---|
| 485 | // load params from hdf5 into kernel tensor |
---|
| 486 | if (aubio_file_hdf5_load_dataset_into_vector(hdf5, key, vec)) |
---|
| 487 | return AUBIO_FAIL; |
---|
| 488 | } |
---|
| 489 | |
---|
| 490 | { |
---|
| 491 | char_t *key = "/classifier/classifier_3/kernel:0"; |
---|
| 492 | fmat_t *d = aubio_dense_get_weights(o->dense_layer); |
---|
| 493 | if (aubio_file_hdf5_load_dataset_into_matrix(hdf5, key, d)) |
---|
| 494 | return AUBIO_FAIL; |
---|
| 495 | |
---|
| 496 | key = "/classifier/classifier_3/bias:0"; |
---|
| 497 | fvec_t *v = aubio_dense_get_bias(o->dense_layer); |
---|
| 498 | if (aubio_file_hdf5_load_dataset_into_vector(hdf5, key, v)) |
---|
| 499 | return AUBIO_FAIL; |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | if (hdf5) { |
---|
| 503 | del_aubio_file_hdf5(hdf5); |
---|
| 504 | } |
---|
| 505 | |
---|
| 506 | return AUBIO_OK; |
---|
| 507 | } |
---|