1 | /* |
---|
2 | Copyright (C) 2003-2017 Paul Brossier <piem@aubio.org> |
---|
3 | |
---|
4 | This file is part of aubio. |
---|
5 | |
---|
6 | aubio is free software: you can redistribute it and/or modify |
---|
7 | it under the terms of the GNU General Public License as published by |
---|
8 | the Free Software Foundation, either version 3 of the License, or |
---|
9 | (at your option) any later version. |
---|
10 | |
---|
11 | aubio is distributed in the hope that it will be useful, |
---|
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
14 | GNU General Public License for more details. |
---|
15 | |
---|
16 | You should have received a copy of the GNU General Public License |
---|
17 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
18 | |
---|
19 | */ |
---|
20 | |
---|
21 | /* This algorithm was developed by A. de Cheveigné and H. Kawahara and |
---|
22 | * published in: |
---|
23 | * |
---|
24 | * de Cheveigné, A., Kawahara, H. (2002) "YIN, a fundamental frequency |
---|
25 | * estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930. |
---|
26 | * |
---|
27 | * see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html |
---|
28 | */ |
---|
29 | |
---|
30 | #include "aubio_priv.h" |
---|
31 | #include "fvec.h" |
---|
32 | #include "mathutils.h" |
---|
33 | #include "cvec.h" |
---|
34 | #include "spectral/fft.h" |
---|
35 | #include "pitch/pitchyinfast.h" |
---|
36 | |
---|
37 | struct _aubio_pitchyinfast_t |
---|
38 | { |
---|
39 | fvec_t *yin; |
---|
40 | smpl_t tol; |
---|
41 | uint_t peak_pos; |
---|
42 | fvec_t *tmpdata; |
---|
43 | fvec_t *sqdiff; |
---|
44 | fvec_t *kernel; |
---|
45 | fvec_t *samples_fft; |
---|
46 | fvec_t *kernel_fft; |
---|
47 | aubio_fft_t *fft; |
---|
48 | }; |
---|
49 | |
---|
50 | aubio_pitchyinfast_t * |
---|
51 | new_aubio_pitchyinfast (uint_t bufsize) |
---|
52 | { |
---|
53 | aubio_pitchyinfast_t *o = AUBIO_NEW (aubio_pitchyinfast_t); |
---|
54 | o->yin = new_fvec (bufsize / 2); |
---|
55 | o->tmpdata = new_fvec (bufsize); |
---|
56 | o->sqdiff = new_fvec (bufsize / 2); |
---|
57 | o->kernel = new_fvec (bufsize); |
---|
58 | o->samples_fft = new_fvec (bufsize); |
---|
59 | o->kernel_fft = new_fvec (bufsize); |
---|
60 | o->fft = new_aubio_fft (bufsize); |
---|
61 | o->tol = 0.15; |
---|
62 | o->peak_pos = 0; |
---|
63 | return o; |
---|
64 | } |
---|
65 | |
---|
66 | void |
---|
67 | del_aubio_pitchyinfast (aubio_pitchyinfast_t * o) |
---|
68 | { |
---|
69 | del_fvec (o->yin); |
---|
70 | del_fvec (o->tmpdata); |
---|
71 | del_fvec (o->sqdiff); |
---|
72 | del_fvec (o->kernel); |
---|
73 | del_fvec (o->samples_fft); |
---|
74 | del_fvec (o->kernel_fft); |
---|
75 | del_aubio_fft (o->fft); |
---|
76 | AUBIO_FREE (o); |
---|
77 | } |
---|
78 | |
---|
79 | /* all the above in one */ |
---|
80 | void |
---|
81 | aubio_pitchyinfast_do (aubio_pitchyinfast_t * o, const fvec_t * input, fvec_t * out) |
---|
82 | { |
---|
83 | const smpl_t tol = o->tol; |
---|
84 | fvec_t* yin = o->yin; |
---|
85 | const uint_t length = yin->length; |
---|
86 | uint_t B = o->tmpdata->length; |
---|
87 | uint_t W = o->yin->length; // B / 2 |
---|
88 | fvec_t tmp_slice, kernel_ptr; |
---|
89 | uint_t tau; |
---|
90 | sint_t period; |
---|
91 | smpl_t tmp2 = 0.; |
---|
92 | |
---|
93 | // compute r_t(0) + r_t+tau(0) |
---|
94 | { |
---|
95 | fvec_t *squares = o->tmpdata; |
---|
96 | fvec_weighted_copy(input, input, squares); |
---|
97 | #if 0 |
---|
98 | for (tau = 0; tau < W; tau++) { |
---|
99 | tmp_slice.data = squares->data + tau; |
---|
100 | tmp_slice.length = W; |
---|
101 | o->sqdiff->data[tau] = fvec_sum(&tmp_slice); |
---|
102 | } |
---|
103 | #else |
---|
104 | tmp_slice.data = squares->data; |
---|
105 | tmp_slice.length = W; |
---|
106 | o->sqdiff->data[0] = fvec_sum(&tmp_slice); |
---|
107 | for (tau = 1; tau < W; tau++) { |
---|
108 | o->sqdiff->data[tau] = o->sqdiff->data[tau-1]; |
---|
109 | o->sqdiff->data[tau] -= squares->data[tau-1]; |
---|
110 | o->sqdiff->data[tau] += squares->data[W+tau-1]; |
---|
111 | } |
---|
112 | #endif |
---|
113 | fvec_add(o->sqdiff, o->sqdiff->data[0]); |
---|
114 | } |
---|
115 | // compute r_t(tau) = -2.*ifft(fft(samples)*fft(samples[W-1::-1])) |
---|
116 | { |
---|
117 | fvec_t *compmul = o->tmpdata; |
---|
118 | fvec_t *rt_of_tau = o->samples_fft; |
---|
119 | aubio_fft_do_complex(o->fft, input, o->samples_fft); |
---|
120 | // build kernel, take a copy of first half of samples |
---|
121 | tmp_slice.data = input->data; |
---|
122 | tmp_slice.length = W; |
---|
123 | kernel_ptr.data = o->kernel->data + 1; |
---|
124 | kernel_ptr.length = W; |
---|
125 | fvec_copy(&tmp_slice, &kernel_ptr); |
---|
126 | // reverse them |
---|
127 | fvec_rev(&kernel_ptr); |
---|
128 | // compute fft(kernel) |
---|
129 | aubio_fft_do_complex(o->fft, o->kernel, o->kernel_fft); |
---|
130 | // compute complex product |
---|
131 | compmul->data[0] = o->kernel_fft->data[0] * o->samples_fft->data[0]; |
---|
132 | for (tau = 1; tau < W; tau++) { |
---|
133 | compmul->data[tau] = o->kernel_fft->data[tau] * o->samples_fft->data[tau]; |
---|
134 | compmul->data[tau] -= o->kernel_fft->data[B-tau] * o->samples_fft->data[B-tau]; |
---|
135 | } |
---|
136 | compmul->data[W] = o->kernel_fft->data[W] * o->samples_fft->data[W]; |
---|
137 | for (tau = 1; tau < W; tau++) { |
---|
138 | compmul->data[B-tau] = o->kernel_fft->data[B-tau] * o->samples_fft->data[tau]; |
---|
139 | compmul->data[B-tau] += o->kernel_fft->data[tau] * o->samples_fft->data[B-tau]; |
---|
140 | } |
---|
141 | // compute inverse fft |
---|
142 | aubio_fft_rdo_complex(o->fft, compmul, rt_of_tau); |
---|
143 | // compute square difference r_t(tau) = sqdiff - 2 * r_t_tau[W-1:-1] |
---|
144 | for (tau = 0; tau < W; tau++) { |
---|
145 | yin->data[tau] = o->sqdiff->data[tau] - 2. * rt_of_tau->data[tau+W]; |
---|
146 | } |
---|
147 | } |
---|
148 | |
---|
149 | // now build yin and look for first minimum |
---|
150 | fvec_zeros(out); |
---|
151 | yin->data[0] = 1.; |
---|
152 | for (tau = 1; tau < length; tau++) { |
---|
153 | tmp2 += yin->data[tau]; |
---|
154 | if (tmp2 != 0) { |
---|
155 | yin->data[tau] *= tau / tmp2; |
---|
156 | } else { |
---|
157 | yin->data[tau] = 1.; |
---|
158 | } |
---|
159 | period = tau - 3; |
---|
160 | if (tau > 4 && (yin->data[period] < tol) && |
---|
161 | (yin->data[period] < yin->data[period + 1])) { |
---|
162 | o->peak_pos = (uint_t)period; |
---|
163 | out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos); |
---|
164 | return; |
---|
165 | } |
---|
166 | } |
---|
167 | // use global minimum |
---|
168 | o->peak_pos = (uint_t)fvec_min_elem (yin); |
---|
169 | out->data[0] = fvec_quadratic_peak_pos (yin, o->peak_pos); |
---|
170 | } |
---|
171 | |
---|
172 | smpl_t |
---|
173 | aubio_pitchyinfast_get_confidence (aubio_pitchyinfast_t * o) { |
---|
174 | return 1. - o->yin->data[o->peak_pos]; |
---|
175 | } |
---|
176 | |
---|
177 | uint_t |
---|
178 | aubio_pitchyinfast_set_tolerance (aubio_pitchyinfast_t * o, smpl_t tol) |
---|
179 | { |
---|
180 | o->tol = tol; |
---|
181 | return 0; |
---|
182 | } |
---|
183 | |
---|
184 | smpl_t |
---|
185 | aubio_pitchyinfast_get_tolerance (aubio_pitchyinfast_t * o) |
---|
186 | { |
---|
187 | return o->tol; |
---|
188 | } |
---|