/* Copyright (C) 2003-2009 Paul Brossier This file is part of aubio. aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with aubio. If not, see . */ #include "aubio_priv.h" #include "fvec.h" #include "cvec.h" #include "mathutils.h" #include "spectral/fft.h" #include "pitch/pitchyinfft.h" /** pitch yinfft structure */ struct _aubio_pitchyinfft_t { fvec_t *win; /**< temporal weighting window */ fvec_t *winput; /**< windowed spectrum */ cvec_t *res; /**< complex vector to compute square difference function */ fvec_t *sqrmag; /**< square difference function */ fvec_t *weight; /**< spectral weighting window (psychoacoustic model) */ cvec_t *fftout; /**< Fourier transform output */ aubio_fft_t *fft; /**< fft object to compute square difference function */ fvec_t *yinfft; /**< Yin function */ smpl_t tol; /**< Yin tolerance */ smpl_t confidence; /**< confidence */ }; static const smpl_t freqs[] = { 0., 20., 25., 31.5, 40., 50., 63., 80., 100., 125., 160., 200., 250., 315., 400., 500., 630., 800., 1000., 1250., 1600., 2000., 2500., 3150., 4000., 5000., 6300., 8000., 9000., 10000., 12500., 15000., 20000., 25100 }; static const smpl_t weight[] = { -75.8, -70.1, -60.8, -52.1, -44.2, -37.5, -31.3, -25.6, -20.9, -16.5, -12.6, -9.6, -7.0, -4.7, -3.0, -1.8, -0.8, -0.2, -0.0, 0.5, 1.6, 3.2, 5.4, 7.8, 8.1, 5.3, -2.4, -11.1, -12.8, -12.2, -7.4, -17.8, -17.8, -17.8 }; aubio_pitchyinfft_t * new_aubio_pitchyinfft (uint_t bufsize) { aubio_pitchyinfft_t *p = AUBIO_NEW (aubio_pitchyinfft_t); p->winput = new_fvec (bufsize); p->fft = new_aubio_fft (bufsize); p->fftout = new_cvec (bufsize); p->sqrmag = new_fvec (bufsize); p->res = new_cvec (bufsize); p->yinfft = new_fvec (bufsize / 2 + 1); p->tol = 0.85; p->win = new_aubio_window ("hanningz", bufsize); p->weight = new_fvec (bufsize / 2 + 1); uint_t i = 0, j = 1; smpl_t freq = 0, a0 = 0, a1 = 0, f0 = 0, f1 = 0; for (i = 0; i < p->weight->length; i++) { freq = (smpl_t) i / (smpl_t) bufsize *(smpl_t) 44100.; while (freq > freqs[j]) { j += 1; } a0 = weight[j - 1]; f0 = freqs[j - 1]; a1 = weight[j]; f1 = freqs[j]; if (f0 == f1) { // just in case p->weight->data[i] = a0; } else if (f0 == 0) { // y = ax+b p->weight->data[i] = (a1 - a0) / f1 * freq + a0; } else { p->weight->data[i] = (a1 - a0) / (f1 - f0) * freq + (a0 - (a1 - a0) / (f1 / f0 - 1.)); } while (freq > freqs[j]) { j += 1; } //AUBIO_DBG("%f\n",p->weight->data[i]); p->weight->data[i] = DB2LIN (p->weight->data[i]); //p->weight->data[i] = SQRT(DB2LIN(p->weight->data[i])); } return p; } void aubio_pitchyinfft_do (aubio_pitchyinfft_t * p, fvec_t * input, fvec_t * output) { uint_t tau, l; uint_t halfperiod; smpl_t tmp, sum; cvec_t *res = (cvec_t *) p->res; fvec_t *yin = (fvec_t *) p->yinfft; l = 0; tmp = 0.; sum = 0.; for (l = 0; l < input->length; l++) { p->winput->data[l] = p->win->data[l] * input->data[l]; } aubio_fft_do (p->fft, p->winput, p->fftout); for (l = 0; l < p->fftout->length; l++) { p->sqrmag->data[l] = SQR (p->fftout->norm[l]); p->sqrmag->data[l] *= p->weight->data[l]; } for (l = 1; l < p->fftout->length; l++) { p->sqrmag->data[(p->fftout->length - 1) * 2 - l] = SQR (p->fftout->norm[l]); p->sqrmag->data[(p->fftout->length - 1) * 2 - l] *= p->weight->data[l]; } for (l = 0; l < p->sqrmag->length / 2 + 1; l++) { sum += p->sqrmag->data[l]; } sum *= 2.; aubio_fft_do (p->fft, p->sqrmag, res); yin->data[0] = 1.; for (tau = 1; tau < yin->length; tau++) { yin->data[tau] = sum - res->norm[tau] * COS (res->phas[tau]); tmp += yin->data[tau]; yin->data[tau] *= tau / tmp; } tau = fvec_min_elem (yin); if (yin->data[tau] < p->tol) { /* no interpolation */ //return tau; /* 3 point quadratic interpolation */ //return fvec_quadint_min(yin,tau,1); /* additional check for (unlikely) octave doubling in higher frequencies */ if (tau > 35) { output->data[0] = fvec_quadint (yin, tau); } else { /* should compare the minimum value of each interpolated peaks */ halfperiod = FLOOR (tau / 2 + .5); if (yin->data[halfperiod] < p->tol) output->data[0] = fvec_quadint (yin, halfperiod); else output->data[0] = fvec_quadint (yin, tau); } } else { output->data[0] = 0.; } } void del_aubio_pitchyinfft (aubio_pitchyinfft_t * p) { del_fvec (p->win); del_aubio_fft (p->fft); del_fvec (p->yinfft); del_fvec (p->sqrmag); del_cvec (p->res); del_cvec (p->fftout); del_fvec (p->winput); del_fvec (p->weight); AUBIO_FREE (p); } smpl_t aubio_pitchyinfft_get_confidence (aubio_pitchyinfft_t * o) { o->confidence = 1. - fvec_min (o->yinfft); return o->confidence; } uint_t aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * p, smpl_t tol) { p->tol = tol; return 0; } smpl_t aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * p) { return p->tol; }