source: src/pitch/pitchyinfft.c @ 5b41ef9

feature/autosinkfeature/cnnfeature/cnn_orgfeature/constantqfeature/crepefeature/crepe_orgfeature/pitchshiftfeature/pydocstringsfeature/timestretchfix/ffmpeg5pitchshiftsamplertimestretchyinfft+
Last change on this file since 5b41ef9 was 9c9202f, checked in by Paul Brossier <piem@piem.org>, 12 years ago

src/pitch/pitchyinfft.c: adapt filter and shortest period to samplerate

  • Property mode set to 100644
File size: 6.1 KB
Line 
1/*
2  Copyright (C) 2003-2013 Paul Brossier <piem@aubio.org>
3
4  This file is part of aubio.
5
6  aubio is free software: you can redistribute it and/or modify
7  it under the terms of the GNU General Public License as published by
8  the Free Software Foundation, either version 3 of the License, or
9  (at your option) any later version.
10
11  aubio is distributed in the hope that it will be useful,
12  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  GNU General Public License for more details.
15
16  You should have received a copy of the GNU General Public License
17  along with aubio.  If not, see <http://www.gnu.org/licenses/>.
18
19*/
20
21#include "aubio_priv.h"
22#include "fvec.h"
23#include "cvec.h"
24#include "mathutils.h"
25#include "spectral/fft.h"
26#include "pitch/pitchyinfft.h"
27
28/** pitch yinfft structure */
29struct _aubio_pitchyinfft_t
30{
31  fvec_t *win;        /**< temporal weighting window */
32  fvec_t *winput;     /**< windowed spectrum */
33  fvec_t *sqrmag;     /**< square difference function */
34  fvec_t *weight;     /**< spectral weighting window (psychoacoustic model) */
35  fvec_t *fftout;     /**< Fourier transform output */
36  aubio_fft_t *fft;   /**< fft object to compute square difference function */
37  fvec_t *yinfft;     /**< Yin function */
38  smpl_t tol;         /**< Yin tolerance */
39  smpl_t confidence;  /**< confidence */
40  uint_t short_period; /** shortest period under which to check for octave error */
41};
42
43static const smpl_t freqs[] = { 0., 20., 25., 31.5, 40., 50., 63., 80., 100.,
44  125., 160., 200., 250., 315., 400., 500., 630., 800., 1000., 1250.,
45  1600., 2000., 2500., 3150., 4000., 5000., 6300., 8000., 9000., 10000.,
46  12500., 15000., 20000., 25100
47};
48
49static const smpl_t weight[] = { -75.8, -70.1, -60.8, -52.1, -44.2, -37.5,
50  -31.3, -25.6, -20.9, -16.5, -12.6, -9.6, -7.0, -4.7, -3.0, -1.8, -0.8,
51  -0.2, -0.0, 0.5, 1.6, 3.2, 5.4, 7.8, 8.1, 5.3, -2.4, -11.1, -12.8,
52  -12.2, -7.4, -17.8, -17.8, -17.8
53};
54
55aubio_pitchyinfft_t *
56new_aubio_pitchyinfft (uint_t samplerate, uint_t bufsize)
57{
58  aubio_pitchyinfft_t *p = AUBIO_NEW (aubio_pitchyinfft_t);
59  p->winput = new_fvec (bufsize);
60  p->fft = new_aubio_fft (bufsize);
61  p->fftout = new_fvec (bufsize);
62  p->sqrmag = new_fvec (bufsize);
63  p->yinfft = new_fvec (bufsize / 2 + 1);
64  p->tol = 0.85;
65  p->win = new_aubio_window ("hanningz", bufsize);
66  p->weight = new_fvec (bufsize / 2 + 1);
67  uint_t i = 0, j = 1;
68  smpl_t freq = 0, a0 = 0, a1 = 0, f0 = 0, f1 = 0;
69  for (i = 0; i < p->weight->length; i++) {
70    freq = (smpl_t) i / (smpl_t) bufsize *(smpl_t) samplerate;
71    while (freq > freqs[j]) {
72      j += 1;
73    }
74    a0 = weight[j - 1];
75    f0 = freqs[j - 1];
76    a1 = weight[j];
77    f1 = freqs[j];
78    if (f0 == f1) {           // just in case
79      p->weight->data[i] = a0;
80    } else if (f0 == 0) {     // y = ax+b
81      p->weight->data[i] = (a1 - a0) / f1 * freq + a0;
82    } else {
83      p->weight->data[i] = (a1 - a0) / (f1 - f0) * freq +
84          (a0 - (a1 - a0) / (f1 / f0 - 1.));
85    }
86    while (freq > freqs[j]) {
87      j += 1;
88    }
89    //AUBIO_DBG("%f\n",p->weight->data[i]);
90    p->weight->data[i] = DB2LIN (p->weight->data[i]);
91    //p->weight->data[i] = SQRT(DB2LIN(p->weight->data[i]));
92  }
93  // check for octave errors above 1300 Hz
94  p->short_period = (uint_t)ROUND(samplerate / 1300.);
95  return p;
96}
97
98void
99aubio_pitchyinfft_do (aubio_pitchyinfft_t * p, fvec_t * input, fvec_t * output)
100{
101  uint_t tau, l;
102  uint_t length = p->fftout->length;
103  uint_t halfperiod;
104  fvec_t *fftout = p->fftout;
105  fvec_t *yin = p->yinfft;
106  smpl_t tmp = 0., sum = 0.;
107  // window the input
108  for (l = 0; l < input->length; l++) {
109    p->winput->data[l] = p->win->data[l] * input->data[l];
110  }
111  // get the real / imag parts of its fft
112  aubio_fft_do_complex (p->fft, p->winput, fftout);
113  // get the squared magnitude spectrum, applying some weight
114  p->sqrmag->data[0] = SQR(fftout->data[0]);
115  p->sqrmag->data[0] *= p->weight->data[0];
116  for (l = 1; l < length / 2; l++) {
117    p->sqrmag->data[l] = SQR(fftout->data[l]) + SQR(fftout->data[length - l]);
118    p->sqrmag->data[l] *= p->weight->data[l];
119    p->sqrmag->data[length - l] = p->sqrmag->data[l];
120  }
121  p->sqrmag->data[length / 2] = SQR(fftout->data[length / 2]);
122  p->sqrmag->data[length / 2] *= p->weight->data[length / 2];
123  // get sum of weighted squared mags
124  for (l = 0; l < length / 2 + 1; l++) {
125    sum += p->sqrmag->data[l];
126  }
127  sum *= 2.;
128  // get the real / imag parts of the fft of the squared magnitude
129  aubio_fft_do_complex (p->fft, p->sqrmag, fftout);
130  yin->data[0] = 1.;
131  for (tau = 1; tau < yin->length; tau++) {
132    // compute the square differences
133    yin->data[tau] = sum - fftout->data[tau];
134    // and the cumulative mean normalized difference function
135    tmp += yin->data[tau];
136    yin->data[tau] *= tau / tmp;
137  }
138  // find best candidates
139  tau = fvec_min_elem (yin);
140  if (yin->data[tau] < p->tol) {
141    // no interpolation, directly return the period as an integer
142    //output->data[0] = tau;
143    //return;
144
145    // 3 point quadratic interpolation
146    //return fvec_quadratic_peak_pos (yin,tau,1);
147    /* additional check for (unlikely) octave doubling in higher frequencies */
148    if (tau > p->short_period) {
149      output->data[0] = fvec_quadratic_peak_pos (yin, tau);
150    } else {
151      /* should compare the minimum value of each interpolated peaks */
152      halfperiod = FLOOR (tau / 2 + .5);
153      if (yin->data[halfperiod] < p->tol)
154        output->data[0] = fvec_quadratic_peak_pos (yin, halfperiod);
155      else
156        output->data[0] = fvec_quadratic_peak_pos (yin, tau);
157    }
158  } else {
159    output->data[0] = 0.;
160  }
161}
162
163void
164del_aubio_pitchyinfft (aubio_pitchyinfft_t * p)
165{
166  del_fvec (p->win);
167  del_aubio_fft (p->fft);
168  del_fvec (p->yinfft);
169  del_fvec (p->sqrmag);
170  del_fvec (p->fftout);
171  del_fvec (p->winput);
172  del_fvec (p->weight);
173  AUBIO_FREE (p);
174}
175
176smpl_t
177aubio_pitchyinfft_get_confidence (aubio_pitchyinfft_t * o) {
178  o->confidence = 1. - fvec_min (o->yinfft);
179  return o->confidence;
180}
181
182uint_t
183aubio_pitchyinfft_set_tolerance (aubio_pitchyinfft_t * p, smpl_t tol)
184{
185  p->tol = tol;
186  return 0;
187}
188
189smpl_t
190aubio_pitchyinfft_get_tolerance (aubio_pitchyinfft_t * p)
191{
192  return p->tol;
193}
Note: See TracBrowser for help on using the repository browser.