/* Copyright (C) 2003 Paul Brossier This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include "aubio_priv.h" #include "sample.h" #include "mathutils.h" #include "pitchmcomb.h" #define CAND_SWAP(a,b) { register aubio_spectralcandidate_t *t=(a);(a)=(b);(b)=t; } typedef struct _aubio_spectralpeak_t aubio_spectralpeak_t; typedef struct _aubio_spectralcandidate_t aubio_spectralcandidate_t; uint_t aubio_pitchmcomb_get_root_peak(aubio_spectralpeak_t * peaks, uint_t length); uint_t aubio_pitchmcomb_quadpick(aubio_spectralpeak_t * spectral_peaks, fvec_t * X); void aubio_pitchmcomb_spectral_pp(aubio_pitchmcomb_t * p, fvec_t * oldmag); void aubio_pitchmcomb_combdet(aubio_pitchmcomb_t * p, fvec_t * newmag); /* not used but useful : sort by amplitudes (or anything else) * sort_pitchpeak(peaks, length); */ /** spectral_peak comparison function (must return signed int) */ static sint_t aubio_pitchmcomb_sort_peak_comp(const void *x, const void *y); /** sort spectral_peak against their mag */ void aubio_pitchmcomb_sort_peak(aubio_spectralpeak_t * peaks, uint_t nbins); /** sort spectral_candidate against their comb ene */ void aubio_pitchmcomb_sort_cand_ene(aubio_spectralcandidate_t ** candidates, uint_t nbins); /** sort spectral_candidate against their frequency */ void aubio_pitchmcomb_sort_cand_freq(aubio_spectralcandidate_t ** candidates, uint_t nbins); struct _aubio_pitchmcomb_t { smpl_t threshold; /**< offset threshold [0.033 or 0.01] */ smpl_t alpha; /**< normalisation exponent [9] */ smpl_t cutoff; /**< low-pass filter cutoff [0.34, 1] */ smpl_t tol; /**< tolerance [0.05] */ smpl_t tau; /**< frequency precision [44100/4096] */ uint_t win_post; /**< median filter window length */ uint_t win_pre; /**< median filter window */ uint_t ncand; /**< maximum number of candidates (combs) */ uint_t npartials; /**< maximum number of partials per combs */ uint_t count; /**< picked picks */ uint_t goodcandidate; /**< best candidate */ uint_t spec_partition; /**< spectrum partition to consider */ aubio_spectralpeak_t * peaks; /**< up to length win/spec_partition */ aubio_spectralcandidate_t ** candidates; /** up to five candidates */ /* some scratch pads */ /** \bug (unnecessary copied from fftgrain?) */ fvec_t * newmag; /**< vec to store mag */ fvec_t * scratch; /**< vec to store modified mag */ fvec_t * scratch2; /**< vec to compute moving median */ fvec_t * theta; /**< vec to store phase */ smpl_t phasediff; smpl_t phasefreq; /** threshfn: name or handle of fn for computing adaptive threshold [median] */ /** aubio_thresholdfn_t thresholdfn; */ /** picker: name or handle of fn for picking event times [quadpick] */ /** aubio_pickerfn_t pickerfn; */ }; /** spectral peak object */ struct _aubio_spectralpeak_t { uint_t bin; /**< bin [0-(length-1)] */ smpl_t ebin; /**< estimated bin */ smpl_t mag; /**< peak magnitude */ }; /** spectral candidates array object */ struct _aubio_spectralcandidate_t { smpl_t ebin; /**< interpolated bin */ smpl_t * ecomb; /**< comb */ smpl_t ene; /**< candidate energy */ smpl_t len; /**< length */ }; smpl_t aubio_pitchmcomb_detect(aubio_pitchmcomb_t * p, cvec_t * fftgrain) { uint_t i=0,j; smpl_t instfreq; fvec_t * newmag = (fvec_t *)p->newmag; //smpl_t hfc; //fe=instfreq(theta1,theta,ops); //theta1=theta; /* copy incoming grain to newmag */ for (j=0; j< newmag->length; j++) newmag->data[i][j]=fftgrain->norm[i][j]; /* detect only if local energy > 10. */ //if (vec_local_energy(newmag)>10.) { //hfc = vec_local_hfc(newmag); //not used aubio_pitchmcomb_spectral_pp(p, newmag); aubio_pitchmcomb_combdet(p,newmag); //aubio_pitchmcomb_sort_cand_freq(p->candidates,p->ncand); //return p->candidates[p->goodcandidate]->ebin; j = (uint_t)FLOOR(p->candidates[p->goodcandidate]->ebin+.5); instfreq = aubio_unwrap2pi(fftgrain->phas[0][j] - p->theta->data[0][j] - j*p->phasediff); instfreq *= p->phasefreq; /* store phase for next run */ for (j=0; j< p->theta->length; j++) { p->theta->data[i][j]=fftgrain->phas[i][j]; } //return p->candidates[p->goodcandidate]->ebin; return FLOOR(p->candidates[p->goodcandidate]->ebin+.5) + instfreq; /*} else { return -1.; }*/ } uint_t aubio_pitch_cands(aubio_pitchmcomb_t * p, cvec_t * fftgrain, smpl_t * cands) { uint_t i=0,j; uint_t k; fvec_t * newmag = (fvec_t *)p->newmag; aubio_spectralcandidate_t ** scands = (aubio_spectralcandidate_t **)(p->candidates); //smpl_t hfc; //fe=instfreq(theta1,theta,ops); //theta1=theta; /* copy incoming grain to newmag */ for (j=0; j< newmag->length; j++) newmag->data[i][j]=fftgrain->norm[i][j]; /* detect only if local energy > 10. */ if (vec_local_energy(newmag)>10.) { /* hfc = vec_local_hfc(newmag); do not use */ aubio_pitchmcomb_spectral_pp(p, newmag); aubio_pitchmcomb_combdet(p,newmag); aubio_pitchmcomb_sort_cand_freq(scands,p->ncand); /* store ncand comb energies in cands[1:ncand] */ for (k = 0; kncand; k++) cands[k] = p->candidates[k]->ene; /* store ncand[end] freq in cands[end] */ cands[p->ncand] = p->candidates[p->ncand-1]->ebin; return 1; } else { for (k = 0; kncand; k++) cands[k] = 0; return 0; } } void aubio_pitchmcomb_spectral_pp(aubio_pitchmcomb_t * p, fvec_t * newmag) { fvec_t * mag = (fvec_t *)p->scratch; fvec_t * tmp = (fvec_t *)p->scratch2; uint_t i=0,j; uint_t length = mag->length; /* copy newmag to mag (scracth) */ for (j=0;jdata[i][j] = newmag->data[i][j]; } vec_dc_removal(mag); /* dc removal */ vec_alpha_normalise(mag,p->alpha); /* alpha normalisation */ /* skipped */ /* low pass filtering */ /** \bug vec_moving_thres may write out of bounds */ vec_adapt_thres(mag,tmp,p->win_post,p->win_pre); /* adaptative threshold */ vec_add(mag,-p->threshold); /* fixed threshold */ { aubio_spectralpeak_t * peaks = (aubio_spectralpeak_t *)p->peaks; uint_t count; /* return bin and ebin */ count = aubio_pitchmcomb_quadpick(peaks,mag); for (j=0;jdata[i][peaks[j].bin]; /* reset non peaks */ for (j=count;jpeaks = peaks; p->count = count; } } void aubio_pitchmcomb_combdet(aubio_pitchmcomb_t * p, fvec_t * newmag) { aubio_spectralpeak_t * peaks = (aubio_spectralpeak_t *)p->peaks; aubio_spectralcandidate_t ** candidate = (aubio_spectralcandidate_t **)p->candidates; /* parms */ uint_t N = p->npartials; /* maximum number of partials to be considered 10 */ uint_t M = p->ncand; /* maximum number of combs to be considered 5 */ uint_t length = newmag->length; uint_t count = p->count; uint_t k; uint_t l; uint_t d; uint_t curlen; smpl_t delta2; smpl_t xx; uint_t position = 0; uint_t root_peak = 0; uint_t tmpl = 0; smpl_t tmpene = 0.; /* get the biggest peak in the spectrum */ root_peak = aubio_pitchmcomb_get_root_peak(peaks,count); /* not enough partials in highest notes, could be forced */ //if (peaks[root_peak].ebin >= aubio_miditofreq(85.)/p->tau) N=2; //if (peaks[root_peak].ebin >= aubio_miditofreq(90.)/p->tau) N=1; /* now calculate the energy of each of the 5 combs */ for (l=0;lene = 0.; /* reset ene and len sums */ candidate[l]->len = 0.; candidate[l]->ebin=scaler*peaks[root_peak].ebin; /* if less than N peaks available, curlen < N */ curlen = (uint_t)FLOOR(length/(candidate[l]->ebin)); curlen = (N < curlen )? N : curlen; /* fill candidate[l]->ecomb[k] with (k+1)*candidate[l]->ebin */ for (k=0;kecomb[k]=(candidate[l]->ebin)*(k+1.); for (k=curlen;kecomb[k]=0.; /* for each in candidate[l]->ecomb[k] */ for (k=0;kecomb the closer to peaks.ebin * (to cope with the inharmonicity)*/ for (d=0;decomb[k]-peaks[d].ebin); if (delta2 <= xx) { position = d; xx = delta2; } } /* for a Q factor of 17, maintaining "constant Q filtering", * and sum energy and length over non null combs */ if ( 17. * xx < candidate[l]->ecomb[k] ) { candidate[l]->ecomb[k]=peaks[position].ebin; candidate[l]->ene += /* ecomb rounded to nearest int */ POW(newmag->data[0][(uint_t)FLOOR(candidate[l]->ecomb[k]+.5)],0.25); candidate[l]->len += 1./curlen; } else candidate[l]->ecomb[k]=0.; } /* punishment */ /*if (candidate[l]->len<0.6) candidate[l]->ene=0.; */ /* remember best candidate energy (in polyphonic, could check for * tmpene*1.1 < candidate->ene to reduce jumps towards low frequencies) */ if (tmpene < candidate[l]->ene) { tmpl = l; tmpene = candidate[l]->ene; } } //p->candidates=candidate; //p->peaks=peaks; p->goodcandidate = tmpl; } /** T=quadpick(X): return indices of elements of X which are peaks and positive * exact peak positions are retrieved by quadratic interpolation * * \bug peak-picking too picky, sometimes counts too many peaks ? */ uint_t aubio_pitchmcomb_quadpick(aubio_spectralpeak_t * spectral_peaks, fvec_t * X){ uint_t i, j, ispeak, count = 0; for (i=0;ichannels;i++) for (j=1;jlength-1;j++) { ispeak = vec_peakpick(X,j); if (ispeak) { count += ispeak; spectral_peaks[count-1].bin = j; spectral_peaks[count-1].ebin = vec_quadint(X,j) - 1.; } } return count; } /* get predominant partial */ uint_t aubio_pitchmcomb_get_root_peak(aubio_spectralpeak_t * peaks, uint_t length) { uint_t i,pos=0; smpl_t tmp = 0.; for (i=0;imag - ((aubio_spectralpeak_t *)x)->mag); } void aubio_pitchmcomb_sort_cand_ene(aubio_spectralcandidate_t ** candidates, uint_t nbins) { uint_t cur = 0; uint_t run = 0; for (cur=0;curene > candidates[cur]->ene) CAND_SWAP(candidates[run], candidates[cur]); } } } void aubio_pitchmcomb_sort_cand_freq(aubio_spectralcandidate_t ** candidates, uint_t nbins) { uint_t cur = 0; uint_t run = 0; for (cur=0;curebin < candidates[cur]->ebin) CAND_SWAP(candidates[run], candidates[cur]); } } } aubio_pitchmcomb_t * new_aubio_pitchmcomb(uint_t bufsize, uint_t hopsize, uint_t channels, uint_t samplerate) { aubio_pitchmcomb_t * p = AUBIO_NEW(aubio_pitchmcomb_t); /* bug: should check if size / 8 > post+pre+1 */ uint_t i; uint_t spec_size; p->spec_partition = 4; p->ncand = 5; p->npartials = 5; p->cutoff = 1.; p->threshold = 0.01; p->win_post = 8; p->win_pre = 7; p->tau = samplerate/bufsize; p->alpha = 9.; p->goodcandidate = 0; p->phasefreq = bufsize/hopsize/TWO_PI; p->phasediff = TWO_PI*hopsize/bufsize; spec_size = bufsize/p->spec_partition; //p->pickerfn = quadpick; //p->biquad = new_biquad(0.1600,0.3200,0.1600, -0.5949, 0.2348); /* allocate temp memory */ p->newmag = new_fvec(spec_size,channels); /* array for median */ p->scratch = new_fvec(spec_size,channels); /* array for phase */ p->theta = new_fvec(spec_size,channels); /* array for adaptative threshold */ p->scratch2 = new_fvec(p->win_post+p->win_pre+1,channels); /* array of spectral peaks */ p->peaks = AUBIO_ARRAY(aubio_spectralpeak_t,spec_size); /* array of pointers to spectral candidates */ p->candidates = AUBIO_ARRAY(aubio_spectralcandidate_t *,p->ncand); for (i=0;incand;i++) { p->candidates[i] = AUBIO_NEW(aubio_spectralcandidate_t); p->candidates[i]->ecomb = AUBIO_ARRAY(smpl_t, spec_size); } return p; } void del_aubio_pitchmcomb (aubio_pitchmcomb_t *p) { uint_t i; del_fvec(p->newmag); del_fvec(p->scratch); del_fvec(p->scratch2); AUBIO_FREE(p->peaks); for (i=0;incand;i++) { AUBIO_FREE(p->candidates[i]); } AUBIO_FREE(p->candidates); AUBIO_FREE(p); }