/* Copyright (C) 2003-2009 Paul Brossier This file is part of aubio. aubio is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. aubio is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with aubio. If not, see . */ #include "aubio_priv.h" #include "fvec.h" #include "cvec.h" #include "mathutils.h" #include "spectral/fft.h" #ifdef HAVE_FFTW3 // using FFTW3 /* note that is not included here but only in aubio_priv.h, so that * c++ projects can still use their own complex definition. */ #include #include #ifdef HAVE_COMPLEX_H #ifdef HAVE_FFTW3F /** fft data type with complex.h and fftw3f */ #define FFTW_TYPE fftwf_complex #else /** fft data type with complex.h and fftw3 */ #define FFTW_TYPE fftw_complex #endif #else #ifdef HAVE_FFTW3F /** fft data type without complex.h and with fftw3f */ #define FFTW_TYPE float #else /** fft data type without complex.h and with fftw */ #define FFTW_TYPE double #endif #endif /** fft data type */ typedef FFTW_TYPE fft_data_t; #ifdef HAVE_FFTW3F #define fftw_malloc fftwf_malloc #define fftw_free fftwf_free #define fftw_execute fftwf_execute #define fftw_plan_dft_r2c_1d fftwf_plan_dft_r2c_1d #define fftw_plan_dft_c2r_1d fftwf_plan_dft_c2r_1d #define fftw_plan_r2r_1d fftwf_plan_r2r_1d #define fftw_plan fftwf_plan #define fftw_destroy_plan fftwf_destroy_plan #endif #ifdef HAVE_FFTW3F #if HAVE_AUBIO_DOUBLE #warning "Using aubio in double precision with fftw3 in single precision" #endif /* HAVE_AUBIO_DOUBLE */ #define real_t float #else /* HAVE_FFTW3F */ #if !HAVE_AUBIO_DOUBLE #warning "Using aubio in single precision with fftw3 in double precision" #endif /* HAVE_AUBIO_DOUBLE */ #define real_t double #endif /* HAVE_FFTW3F */ // a global mutex for FFTW thread safety pthread_mutex_t aubio_fftw_mutex = PTHREAD_MUTEX_INITIALIZER; #else #ifdef HAVE_ACCELERATE // using ACCELERATE // https://developer.apple.com/library/mac/#documentation/Accelerate/Reference/vDSPRef/Reference/reference.html #include #else // using OOURA // let's use ooura instead extern void rdft(int, int, double *, int *, double *); #endif /* HAVE_ACCELERATE */ #endif /* HAVE_FFTW3 */ struct _aubio_fft_t { uint_t winsize; uint_t fft_size; #ifdef HAVE_FFTW3 // using FFTW3 real_t *in, *out; fftw_plan pfw, pbw; fft_data_t * specdata; /* complex spectral data */ #else #ifdef HAVE_ACCELERATE // using ACCELERATE int log2fftsize; #if !HAVE_AUBIO_DOUBLE FFTSetup fftSetup; DSPSplitComplex spec; float *in, *out; #else FFTSetupD fftSetup; DSPDoubleSplitComplex spec; double *in, *out; #endif #else // using OOURA double *in, *out; double *w; int *ip; #endif /* HAVE_ACCELERATE */ #endif /* HAVE_FFTW3 */ fvec_t * compspec; }; aubio_fft_t * new_aubio_fft (uint_t winsize) { aubio_fft_t * s = AUBIO_NEW(aubio_fft_t); #ifdef HAVE_FFTW3 uint_t i; s->winsize = winsize; /* allocate memory */ s->in = AUBIO_ARRAY(real_t,winsize); s->out = AUBIO_ARRAY(real_t,winsize); s->compspec = new_fvec(winsize); /* create plans */ pthread_mutex_lock(&aubio_fftw_mutex); #ifdef HAVE_COMPLEX_H s->fft_size = winsize/2 + 1; s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size); s->pfw = fftw_plan_dft_r2c_1d(winsize, s->in, s->specdata, FFTW_ESTIMATE); s->pbw = fftw_plan_dft_c2r_1d(winsize, s->specdata, s->out, FFTW_ESTIMATE); #else s->fft_size = winsize; s->specdata = (fft_data_t*)fftw_malloc(sizeof(fft_data_t)*s->fft_size); s->pfw = fftw_plan_r2r_1d(winsize, s->in, s->specdata, FFTW_R2HC, FFTW_ESTIMATE); s->pbw = fftw_plan_r2r_1d(winsize, s->specdata, s->out, FFTW_HC2R, FFTW_ESTIMATE); #endif pthread_mutex_unlock(&aubio_fftw_mutex); for (i = 0; i < s->winsize; i++) { s->in[i] = 0.; s->out[i] = 0.; } for (i = 0; i < s->fft_size; i++) { s->specdata[i] = 0.; } #else #ifdef HAVE_ACCELERATE // using ACCELERATE s->winsize = winsize; s->fft_size = winsize; s->compspec = new_fvec(winsize); s->log2fftsize = (uint_t)log2f(s->fft_size); #if !HAVE_AUBIO_DOUBLE s->in = AUBIO_ARRAY(float, s->fft_size); s->out = AUBIO_ARRAY(float, s->fft_size); s->spec.realp = AUBIO_ARRAY(float, s->fft_size/2); s->spec.imagp = AUBIO_ARRAY(float, s->fft_size/2); s->fftSetup = vDSP_create_fftsetup(s->log2fftsize, FFT_RADIX2); #else s->in = AUBIO_ARRAY(double, s->fft_size); s->out = AUBIO_ARRAY(double, s->fft_size); s->spec.realp = AUBIO_ARRAY(double, s->fft_size/2); s->spec.imagp = AUBIO_ARRAY(double, s->fft_size/2); s->fftSetup = vDSP_create_fftsetupD(s->log2fftsize, FFT_RADIX2); #endif #else // using OOURA s->winsize = winsize; s->fft_size = winsize / 2 + 1; s->compspec = new_fvec(winsize); s->in = AUBIO_ARRAY(double, s->winsize); s->out = AUBIO_ARRAY(double, s->winsize); s->ip = AUBIO_ARRAY(int , s->fft_size); s->w = AUBIO_ARRAY(double, s->fft_size); s->ip[0] = 0; #endif /* HAVE_ACCELERATE */ #endif /* HAVE_FFTW3 */ return s; } void del_aubio_fft(aubio_fft_t * s) { /* destroy data */ del_fvec(s->compspec); #ifdef HAVE_FFTW3 // using FFTW3 fftw_destroy_plan(s->pfw); fftw_destroy_plan(s->pbw); fftw_free(s->specdata); #else /* HAVE_FFTW3 */ #ifdef HAVE_ACCELERATE // using ACCELERATE AUBIO_FREE(s->spec.realp); AUBIO_FREE(s->spec.imagp); #else // using OOURA AUBIO_FREE(s->w); AUBIO_FREE(s->ip); #endif /* HAVE_ACCELERATE */ #endif /* HAVE_FFTW3 */ AUBIO_FREE(s->out); AUBIO_FREE(s->in); AUBIO_FREE(s); } void aubio_fft_do(aubio_fft_t * s, fvec_t * input, cvec_t * spectrum) { aubio_fft_do_complex(s, input, s->compspec); aubio_fft_get_spectrum(s->compspec, spectrum); } void aubio_fft_rdo(aubio_fft_t * s, cvec_t * spectrum, fvec_t * output) { aubio_fft_get_realimag(spectrum, s->compspec); aubio_fft_rdo_complex(s, s->compspec, output); } void aubio_fft_do_complex(aubio_fft_t * s, fvec_t * input, fvec_t * compspec) { uint_t i; for (i=0; i < s->winsize; i++) { s->in[i] = input->data[i]; } #ifdef HAVE_FFTW3 // using FFTW3 fftw_execute(s->pfw); #ifdef HAVE_COMPLEX_H compspec->data[0] = REAL(s->specdata[0]); for (i = 1; i < s->fft_size -1 ; i++) { compspec->data[i] = REAL(s->specdata[i]); compspec->data[compspec->length - i] = IMAG(s->specdata[i]); } compspec->data[s->fft_size-1] = REAL(s->specdata[s->fft_size-1]); #else /* HAVE_COMPLEX_H */ for (i = 0; i < s->fft_size; i++) { compspec->data[i] = s->specdata[i]; } #endif /* HAVE_COMPLEX_H */ #else /* HAVE_FFTW3 */ #ifdef HAVE_ACCELERATE // using ACCELERATE #if !HAVE_AUBIO_DOUBLE // convert real data to even/odd format used in vDSP vDSP_ctoz((DSPComplex*)s->in, 2, &s->spec, 1, s->fft_size/2); // compute the FFT vDSP_fft_zrip(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_FORWARD); #else // convert real data to even/odd format used in vDSP vDSP_ctozD((DSPDoubleComplex*)s->in, 2, &s->spec, 1, s->fft_size/2); // compute the FFT vDSP_fft_zripD(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_FORWARD); #endif // convert from vDSP complex split to [ r0, r1, ..., rN, iN-1, .., i2, i1] compspec->data[0] = s->spec.realp[0]; compspec->data[s->fft_size / 2] = s->spec.imagp[0]; for (i = 1; i < s->fft_size / 2; i++) { compspec->data[i] = s->spec.realp[i]; compspec->data[s->fft_size - i] = s->spec.imagp[i]; } // apply scaling smpl_t scale = 1./2.; #if !HAVE_AUBIO_DOUBLE vDSP_vsmul(compspec->data, 1, &scale, compspec->data, 1, s->fft_size); #else vDSP_vsmulD(compspec->data, 1, &scale, compspec->data, 1, s->fft_size); #endif #else // using OOURA rdft(s->winsize, 1, s->in, s->ip, s->w); compspec->data[0] = s->in[0]; compspec->data[s->winsize / 2] = s->in[1]; for (i = 1; i < s->fft_size - 1; i++) { compspec->data[i] = s->in[2 * i]; compspec->data[s->winsize - i] = - s->in[2 * i + 1]; } #endif /* HAVE_ACCELERATE */ #endif /* HAVE_FFTW3 */ } void aubio_fft_rdo_complex(aubio_fft_t * s, fvec_t * compspec, fvec_t * output) { uint_t i; #ifdef HAVE_FFTW3 const smpl_t renorm = 1./(smpl_t)s->winsize; #ifdef HAVE_COMPLEX_H s->specdata[0] = compspec->data[0]; for (i=1; i < s->fft_size - 1; i++) { s->specdata[i] = compspec->data[i] + I * compspec->data[compspec->length - i]; } s->specdata[s->fft_size - 1] = compspec->data[s->fft_size - 1]; #else for (i=0; i < s->fft_size; i++) { s->specdata[i] = compspec->data[i]; } #endif fftw_execute(s->pbw); for (i = 0; i < output->length; i++) { output->data[i] = s->out[i]*renorm; } #else /* HAVE_FFTW3 */ #ifdef HAVE_ACCELERATE // using ACCELERATE // convert from real imag [ r0, r1, ..., rN, iN-1, .., i2, i1] // to vDSP packed format [ r0, rN, r1, i1, ..., rN-1, iN-1 ] s->out[0] = compspec->data[0]; s->out[1] = compspec->data[s->winsize / 2]; for (i = 1; i < s->fft_size / 2; i++) { s->out[2 * i] = compspec->data[i]; s->out[2 * i + 1] = compspec->data[s->winsize - i]; } #if !HAVE_AUBIO_DOUBLE // convert to split complex format used in vDSP vDSP_ctoz((DSPComplex*)s->out, 2, &s->spec, 1, s->fft_size/2); // compute the FFT vDSP_fft_zrip(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_INVERSE); // convert result to real output vDSP_ztoc(&s->spec, 1, (DSPComplex*)output->data, 2, s->fft_size/2); // apply scaling smpl_t scale = 1.0 / s->winsize; vDSP_vsmul(output->data, 1, &scale, output->data, 1, s->fft_size); #else // convert to split complex format used in vDSP vDSP_ctozD((DSPDoubleComplex*)s->out, 2, &s->spec, 1, s->fft_size/2); // compute the FFT vDSP_fft_zripD(s->fftSetup, &s->spec, 1, s->log2fftsize, FFT_INVERSE); // convert result to real output vDSP_ztocD(&s->spec, 1, (DSPDoubleComplex*)output->data, 2, s->fft_size/2); // apply scaling smpl_t scale = 1.0 / s->winsize; vDSP_vsmulD(output->data, 1, &scale, output->data, 1, s->fft_size); #endif #else // using OOURA smpl_t scale = 2.0 / s->winsize; s->out[0] = compspec->data[0]; s->out[1] = compspec->data[s->winsize / 2]; for (i = 1; i < s->fft_size - 1; i++) { s->out[2 * i] = compspec->data[i]; s->out[2 * i + 1] = - compspec->data[s->winsize - i]; } rdft(s->winsize, -1, s->out, s->ip, s->w); for (i=0; i < s->winsize; i++) { output->data[i] = s->out[i] * scale; } #endif /* HAVE_ACCELERATE */ #endif /* HAVE_FFTW3 */ } void aubio_fft_get_spectrum(fvec_t * compspec, cvec_t * spectrum) { aubio_fft_get_phas(compspec, spectrum); aubio_fft_get_norm(compspec, spectrum); } void aubio_fft_get_realimag(cvec_t * spectrum, fvec_t * compspec) { aubio_fft_get_imag(spectrum, compspec); aubio_fft_get_real(spectrum, compspec); } void aubio_fft_get_phas(fvec_t * compspec, cvec_t * spectrum) { uint_t i; if (compspec->data[0] < 0) { spectrum->phas[0] = PI; } else { spectrum->phas[0] = 0.; } for (i=1; i < spectrum->length - 1; i++) { spectrum->phas[i] = ATAN2(compspec->data[compspec->length-i], compspec->data[i]); } if (compspec->data[compspec->length/2] < 0) { spectrum->phas[spectrum->length - 1] = PI; } else { spectrum->phas[spectrum->length - 1] = 0.; } } void aubio_fft_get_norm(fvec_t * compspec, cvec_t * spectrum) { uint_t i = 0; spectrum->norm[0] = ABS(compspec->data[0]); for (i=1; i < spectrum->length - 1; i++) { spectrum->norm[i] = SQRT(SQR(compspec->data[i]) + SQR(compspec->data[compspec->length - i]) ); } spectrum->norm[spectrum->length-1] = ABS(compspec->data[compspec->length/2]); } void aubio_fft_get_imag(cvec_t * spectrum, fvec_t * compspec) { uint_t i; for (i = 1; i < ( compspec->length + 1 ) / 2 /*- 1 + 1*/; i++) { compspec->data[compspec->length - i] = spectrum->norm[i]*SIN(spectrum->phas[i]); } } void aubio_fft_get_real(cvec_t * spectrum, fvec_t * compspec) { uint_t i; for (i = 0; i < compspec->length / 2 + 1; i++) { compspec->data[i] = spectrum->norm[i]*COS(spectrum->phas[i]); } }