1 | /* |
---|
2 | Copyright (C) 2007-2009 Paul Brossier <piem@aubio.org> |
---|
3 | and Amaury Hazan <ahazan@iua.upf.edu> |
---|
4 | |
---|
5 | This file is part of aubio. |
---|
6 | |
---|
7 | aubio is free software: you can redistribute it and/or modify |
---|
8 | it under the terms of the GNU General Public License as published by |
---|
9 | the Free Software Foundation, either version 3 of the License, or |
---|
10 | (at your option) any later version. |
---|
11 | |
---|
12 | aubio is distributed in the hope that it will be useful, |
---|
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
15 | GNU General Public License for more details. |
---|
16 | |
---|
17 | You should have received a copy of the GNU General Public License |
---|
18 | along with aubio. If not, see <http://www.gnu.org/licenses/>. |
---|
19 | |
---|
20 | */ |
---|
21 | |
---|
22 | #include "aubio_priv.h" |
---|
23 | #include "fvec.h" |
---|
24 | #include "cvec.h" |
---|
25 | #include "spectral/filterbank.h" |
---|
26 | #include "mathutils.h" |
---|
27 | |
---|
28 | uint_t |
---|
29 | aubio_filterbank_set_triangle_bands (aubio_filterbank_t * fb, |
---|
30 | fvec_t * freqs, smpl_t samplerate) |
---|
31 | { |
---|
32 | |
---|
33 | fvec_t *filters = aubio_filterbank_get_coeffs (fb); |
---|
34 | uint_t n_filters = filters->channels, win_s = filters->length; |
---|
35 | |
---|
36 | uint_t fn; /* filter counter */ |
---|
37 | uint_t bin; /* bin counter */ |
---|
38 | |
---|
39 | /* freqs define the bands of triangular overlapping windows. |
---|
40 | throw a warning if filterbank object fb is too short. */ |
---|
41 | if (freqs->length - 2 > n_filters) { |
---|
42 | AUBIO_WRN ("not enough filters, %d allocated but %d requested\n", |
---|
43 | n_filters, freqs->length - 2); |
---|
44 | } |
---|
45 | |
---|
46 | if (freqs->length - 2 < n_filters) { |
---|
47 | AUBIO_WRN ("too many filters, %d allocated but %d requested\n", |
---|
48 | n_filters, freqs->length - 2); |
---|
49 | } |
---|
50 | |
---|
51 | if (freqs->data[0][freqs->length - 1] > samplerate / 2) { |
---|
52 | AUBIO_WRN ("Nyquist frequency is %fHz, but highest frequency band ends at \ |
---|
53 | %fHz\n", samplerate / 2, freqs->data[0][freqs->length - 1]); |
---|
54 | } |
---|
55 | |
---|
56 | /* convenience reference to lower/center/upper frequency for each triangle */ |
---|
57 | fvec_t *lower_freqs = new_fvec (n_filters, 1); |
---|
58 | fvec_t *upper_freqs = new_fvec (n_filters, 1); |
---|
59 | fvec_t *center_freqs = new_fvec (n_filters, 1); |
---|
60 | |
---|
61 | /* height of each triangle */ |
---|
62 | fvec_t *triangle_heights = new_fvec (n_filters, 1); |
---|
63 | |
---|
64 | /* lookup table of each bin frequency in hz */ |
---|
65 | fvec_t *fft_freqs = new_fvec (win_s, 1); |
---|
66 | |
---|
67 | /* fill up the lower/center/upper */ |
---|
68 | for (fn = 0; fn < n_filters; fn++) { |
---|
69 | lower_freqs->data[0][fn] = freqs->data[0][fn]; |
---|
70 | center_freqs->data[0][fn] = freqs->data[0][fn + 1]; |
---|
71 | upper_freqs->data[0][fn] = freqs->data[0][fn + 2]; |
---|
72 | } |
---|
73 | |
---|
74 | /* compute triangle heights so that each triangle has unit area */ |
---|
75 | for (fn = 0; fn < n_filters; fn++) { |
---|
76 | triangle_heights->data[0][fn] = |
---|
77 | 2. / (upper_freqs->data[0][fn] - lower_freqs->data[0][fn]); |
---|
78 | } |
---|
79 | |
---|
80 | /* fill fft_freqs lookup table, which assigns the frequency in hz to each bin */ |
---|
81 | for (bin = 0; bin < win_s; bin++) { |
---|
82 | fft_freqs->data[0][bin] = |
---|
83 | aubio_bintofreq (bin, samplerate, (win_s - 1) * 2); |
---|
84 | } |
---|
85 | |
---|
86 | /* zeroing of all filters */ |
---|
87 | fvec_zeros (filters); |
---|
88 | |
---|
89 | if (fft_freqs->data[0][1] >= lower_freqs->data[0][0]) { |
---|
90 | /* - 1 to make sure we don't miss the smallest power of two */ |
---|
91 | uint_t min_win_s = |
---|
92 | (uint_t) FLOOR (samplerate / lower_freqs->data[0][0]) - 1; |
---|
93 | AUBIO_WRN ("Lowest frequency bin (%.2fHz) is higher than lowest frequency \ |
---|
94 | band (%.2f-%.2fHz). Consider increasing the window size from %d to %d.\n", |
---|
95 | fft_freqs->data[0][1], lower_freqs->data[0][0], |
---|
96 | upper_freqs->data[0][0], (win_s - 1) * 2, |
---|
97 | aubio_next_power_of_two (min_win_s)); |
---|
98 | } |
---|
99 | |
---|
100 | /* building each filter table */ |
---|
101 | for (fn = 0; fn < n_filters; fn++) { |
---|
102 | |
---|
103 | /* skip first elements */ |
---|
104 | for (bin = 0; bin < win_s - 1; bin++) { |
---|
105 | if (fft_freqs->data[0][bin] <= lower_freqs->data[0][fn] && |
---|
106 | fft_freqs->data[0][bin + 1] > lower_freqs->data[0][fn]) { |
---|
107 | bin++; |
---|
108 | break; |
---|
109 | } |
---|
110 | } |
---|
111 | |
---|
112 | /* compute positive slope step size */ |
---|
113 | smpl_t riseInc = |
---|
114 | triangle_heights->data[0][fn] / |
---|
115 | (center_freqs->data[0][fn] - lower_freqs->data[0][fn]); |
---|
116 | |
---|
117 | /* compute coefficients in positive slope */ |
---|
118 | for (; bin < win_s - 1; bin++) { |
---|
119 | filters->data[fn][bin] = |
---|
120 | (fft_freqs->data[0][bin] - lower_freqs->data[0][fn]) * riseInc; |
---|
121 | |
---|
122 | if (fft_freqs->data[0][bin + 1] >= center_freqs->data[0][fn]) { |
---|
123 | bin++; |
---|
124 | break; |
---|
125 | } |
---|
126 | } |
---|
127 | |
---|
128 | /* compute negative slope step size */ |
---|
129 | smpl_t downInc = |
---|
130 | triangle_heights->data[0][fn] / |
---|
131 | (upper_freqs->data[0][fn] - center_freqs->data[0][fn]); |
---|
132 | |
---|
133 | /* compute coefficents in negative slope */ |
---|
134 | for (; bin < win_s - 1; bin++) { |
---|
135 | filters->data[fn][bin] += |
---|
136 | (upper_freqs->data[0][fn] - fft_freqs->data[0][bin]) * downInc; |
---|
137 | |
---|
138 | if (filters->data[fn][bin] < 0.) { |
---|
139 | filters->data[fn][bin] = 0.; |
---|
140 | } |
---|
141 | |
---|
142 | if (fft_freqs->data[0][bin + 1] >= upper_freqs->data[0][fn]) |
---|
143 | break; |
---|
144 | } |
---|
145 | /* nothing else to do */ |
---|
146 | |
---|
147 | } |
---|
148 | |
---|
149 | /* destroy temporarly allocated vectors */ |
---|
150 | del_fvec (lower_freqs); |
---|
151 | del_fvec (upper_freqs); |
---|
152 | del_fvec (center_freqs); |
---|
153 | |
---|
154 | del_fvec (triangle_heights); |
---|
155 | del_fvec (fft_freqs); |
---|
156 | |
---|
157 | return 0; |
---|
158 | } |
---|
159 | |
---|
160 | uint_t |
---|
161 | aubio_filterbank_set_mel_coeffs_slaney (aubio_filterbank_t * fb, |
---|
162 | smpl_t samplerate) |
---|
163 | { |
---|
164 | uint_t retval; |
---|
165 | |
---|
166 | /* Malcolm Slaney parameters */ |
---|
167 | smpl_t lowestFrequency = 133.3333; |
---|
168 | smpl_t linearSpacing = 66.66666666; |
---|
169 | smpl_t logSpacing = 1.0711703; |
---|
170 | |
---|
171 | uint_t linearFilters = 13; |
---|
172 | uint_t logFilters = 27; |
---|
173 | uint_t n_filters = linearFilters + logFilters; |
---|
174 | |
---|
175 | uint_t fn; /* filter counter */ |
---|
176 | |
---|
177 | /* buffers to compute filter frequencies */ |
---|
178 | fvec_t *freqs = new_fvec (n_filters + 2, 1); |
---|
179 | |
---|
180 | /* first step: fill all the linear filter frequencies */ |
---|
181 | for (fn = 0; fn < linearFilters; fn++) { |
---|
182 | freqs->data[0][fn] = lowestFrequency + fn * linearSpacing; |
---|
183 | } |
---|
184 | smpl_t lastlinearCF = freqs->data[0][fn - 1]; |
---|
185 | |
---|
186 | /* second step: fill all the log filter frequencies */ |
---|
187 | for (fn = 0; fn < logFilters + 2; fn++) { |
---|
188 | freqs->data[0][fn + linearFilters] = |
---|
189 | lastlinearCF * (POW (logSpacing, fn + 1)); |
---|
190 | } |
---|
191 | |
---|
192 | /* now compute the actual coefficients */ |
---|
193 | retval = aubio_filterbank_set_triangle_bands (fb, freqs, samplerate); |
---|
194 | |
---|
195 | /* destroy vector used to store frequency limits */ |
---|
196 | del_fvec (freqs); |
---|
197 | |
---|
198 | return retval; |
---|
199 | } |
---|