1 | /* |
---|
2 | Fast Fourier/Cosine/Sine Transform |
---|
3 | dimension :one |
---|
4 | data length :power of 2 |
---|
5 | decimation :frequency |
---|
6 | radix :8, 4, 2 |
---|
7 | data :inplace |
---|
8 | table :use |
---|
9 | functions |
---|
10 | cdft: Complex Discrete Fourier Transform |
---|
11 | rdft: Real Discrete Fourier Transform |
---|
12 | ddct: Discrete Cosine Transform |
---|
13 | ddst: Discrete Sine Transform |
---|
14 | dfct: Cosine Transform of RDFT (Real Symmetric DFT) |
---|
15 | dfst: Sine Transform of RDFT (Real Anti-symmetric DFT) |
---|
16 | function prototypes |
---|
17 | void cdft(int, int, double *, int *, double *); |
---|
18 | void rdft(int, int, double *, int *, double *); |
---|
19 | void ddct(int, int, double *, int *, double *); |
---|
20 | void ddst(int, int, double *, int *, double *); |
---|
21 | void dfct(int, double *, double *, int *, double *); |
---|
22 | void dfst(int, double *, double *, int *, double *); |
---|
23 | |
---|
24 | |
---|
25 | -------- Complex DFT (Discrete Fourier Transform) -------- |
---|
26 | [definition] |
---|
27 | <case1> |
---|
28 | X[k] = sum_j=0^n-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n |
---|
29 | <case2> |
---|
30 | X[k] = sum_j=0^n-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n |
---|
31 | (notes: sum_j=0^n-1 is a summation from j=0 to n-1) |
---|
32 | [usage] |
---|
33 | <case1> |
---|
34 | ip[0] = 0; // first time only |
---|
35 | cdft(2*n, 1, a, ip, w); |
---|
36 | <case2> |
---|
37 | ip[0] = 0; // first time only |
---|
38 | cdft(2*n, -1, a, ip, w); |
---|
39 | [parameters] |
---|
40 | 2*n :data length (int) |
---|
41 | n >= 1, n = power of 2 |
---|
42 | a[0...2*n-1] :input/output data (double *) |
---|
43 | input data |
---|
44 | a[2*j] = Re(x[j]), |
---|
45 | a[2*j+1] = Im(x[j]), 0<=j<n |
---|
46 | output data |
---|
47 | a[2*k] = Re(X[k]), |
---|
48 | a[2*k+1] = Im(X[k]), 0<=k<n |
---|
49 | ip[0...*] :work area for bit reversal (int *) |
---|
50 | length of ip >= 2+sqrt(n) |
---|
51 | strictly, |
---|
52 | length of ip >= |
---|
53 | 2+(1<<(int)(log(n+0.5)/log(2))/2). |
---|
54 | ip[0],ip[1] are pointers of the cos/sin table. |
---|
55 | w[0...n/2-1] :cos/sin table (double *) |
---|
56 | w[],ip[] are initialized if ip[0] == 0. |
---|
57 | [remark] |
---|
58 | Inverse of |
---|
59 | cdft(2*n, -1, a, ip, w); |
---|
60 | is |
---|
61 | cdft(2*n, 1, a, ip, w); |
---|
62 | for (j = 0; j <= 2 * n - 1; j++) { |
---|
63 | a[j] *= 1.0 / n; |
---|
64 | } |
---|
65 | . |
---|
66 | |
---|
67 | |
---|
68 | -------- Real DFT / Inverse of Real DFT -------- |
---|
69 | [definition] |
---|
70 | <case1> RDFT |
---|
71 | R[k] = sum_j=0^n-1 a[j]*cos(2*pi*j*k/n), 0<=k<=n/2 |
---|
72 | I[k] = sum_j=0^n-1 a[j]*sin(2*pi*j*k/n), 0<k<n/2 |
---|
73 | <case2> IRDFT (excluding scale) |
---|
74 | a[k] = (R[0] + R[n/2]*cos(pi*k))/2 + |
---|
75 | sum_j=1^n/2-1 R[j]*cos(2*pi*j*k/n) + |
---|
76 | sum_j=1^n/2-1 I[j]*sin(2*pi*j*k/n), 0<=k<n |
---|
77 | [usage] |
---|
78 | <case1> |
---|
79 | ip[0] = 0; // first time only |
---|
80 | rdft(n, 1, a, ip, w); |
---|
81 | <case2> |
---|
82 | ip[0] = 0; // first time only |
---|
83 | rdft(n, -1, a, ip, w); |
---|
84 | [parameters] |
---|
85 | n :data length (int) |
---|
86 | n >= 2, n = power of 2 |
---|
87 | a[0...n-1] :input/output data (double *) |
---|
88 | <case1> |
---|
89 | output data |
---|
90 | a[2*k] = R[k], 0<=k<n/2 |
---|
91 | a[2*k+1] = I[k], 0<k<n/2 |
---|
92 | a[1] = R[n/2] |
---|
93 | <case2> |
---|
94 | input data |
---|
95 | a[2*j] = R[j], 0<=j<n/2 |
---|
96 | a[2*j+1] = I[j], 0<j<n/2 |
---|
97 | a[1] = R[n/2] |
---|
98 | ip[0...*] :work area for bit reversal (int *) |
---|
99 | length of ip >= 2+sqrt(n/2) |
---|
100 | strictly, |
---|
101 | length of ip >= |
---|
102 | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
---|
103 | ip[0],ip[1] are pointers of the cos/sin table. |
---|
104 | w[0...n/2-1] :cos/sin table (double *) |
---|
105 | w[],ip[] are initialized if ip[0] == 0. |
---|
106 | [remark] |
---|
107 | Inverse of |
---|
108 | rdft(n, 1, a, ip, w); |
---|
109 | is |
---|
110 | rdft(n, -1, a, ip, w); |
---|
111 | for (j = 0; j <= n - 1; j++) { |
---|
112 | a[j] *= 2.0 / n; |
---|
113 | } |
---|
114 | . |
---|
115 | |
---|
116 | |
---|
117 | -------- DCT (Discrete Cosine Transform) / Inverse of DCT -------- |
---|
118 | [definition] |
---|
119 | <case1> IDCT (excluding scale) |
---|
120 | C[k] = sum_j=0^n-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n |
---|
121 | <case2> DCT |
---|
122 | C[k] = sum_j=0^n-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n |
---|
123 | [usage] |
---|
124 | <case1> |
---|
125 | ip[0] = 0; // first time only |
---|
126 | ddct(n, 1, a, ip, w); |
---|
127 | <case2> |
---|
128 | ip[0] = 0; // first time only |
---|
129 | ddct(n, -1, a, ip, w); |
---|
130 | [parameters] |
---|
131 | n :data length (int) |
---|
132 | n >= 2, n = power of 2 |
---|
133 | a[0...n-1] :input/output data (double *) |
---|
134 | output data |
---|
135 | a[k] = C[k], 0<=k<n |
---|
136 | ip[0...*] :work area for bit reversal (int *) |
---|
137 | length of ip >= 2+sqrt(n/2) |
---|
138 | strictly, |
---|
139 | length of ip >= |
---|
140 | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
---|
141 | ip[0],ip[1] are pointers of the cos/sin table. |
---|
142 | w[0...n*5/4-1] :cos/sin table (double *) |
---|
143 | w[],ip[] are initialized if ip[0] == 0. |
---|
144 | [remark] |
---|
145 | Inverse of |
---|
146 | ddct(n, -1, a, ip, w); |
---|
147 | is |
---|
148 | a[0] *= 0.5; |
---|
149 | ddct(n, 1, a, ip, w); |
---|
150 | for (j = 0; j <= n - 1; j++) { |
---|
151 | a[j] *= 2.0 / n; |
---|
152 | } |
---|
153 | . |
---|
154 | |
---|
155 | |
---|
156 | -------- DST (Discrete Sine Transform) / Inverse of DST -------- |
---|
157 | [definition] |
---|
158 | <case1> IDST (excluding scale) |
---|
159 | S[k] = sum_j=1^n A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n |
---|
160 | <case2> DST |
---|
161 | S[k] = sum_j=0^n-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n |
---|
162 | [usage] |
---|
163 | <case1> |
---|
164 | ip[0] = 0; // first time only |
---|
165 | ddst(n, 1, a, ip, w); |
---|
166 | <case2> |
---|
167 | ip[0] = 0; // first time only |
---|
168 | ddst(n, -1, a, ip, w); |
---|
169 | [parameters] |
---|
170 | n :data length (int) |
---|
171 | n >= 2, n = power of 2 |
---|
172 | a[0...n-1] :input/output data (double *) |
---|
173 | <case1> |
---|
174 | input data |
---|
175 | a[j] = A[j], 0<j<n |
---|
176 | a[0] = A[n] |
---|
177 | output data |
---|
178 | a[k] = S[k], 0<=k<n |
---|
179 | <case2> |
---|
180 | output data |
---|
181 | a[k] = S[k], 0<k<n |
---|
182 | a[0] = S[n] |
---|
183 | ip[0...*] :work area for bit reversal (int *) |
---|
184 | length of ip >= 2+sqrt(n/2) |
---|
185 | strictly, |
---|
186 | length of ip >= |
---|
187 | 2+(1<<(int)(log(n/2+0.5)/log(2))/2). |
---|
188 | ip[0],ip[1] are pointers of the cos/sin table. |
---|
189 | w[0...n*5/4-1] :cos/sin table (double *) |
---|
190 | w[],ip[] are initialized if ip[0] == 0. |
---|
191 | [remark] |
---|
192 | Inverse of |
---|
193 | ddst(n, -1, a, ip, w); |
---|
194 | is |
---|
195 | a[0] *= 0.5; |
---|
196 | ddst(n, 1, a, ip, w); |
---|
197 | for (j = 0; j <= n - 1; j++) { |
---|
198 | a[j] *= 2.0 / n; |
---|
199 | } |
---|
200 | . |
---|
201 | |
---|
202 | |
---|
203 | -------- Cosine Transform of RDFT (Real Symmetric DFT) -------- |
---|
204 | [definition] |
---|
205 | C[k] = sum_j=0^n a[j]*cos(pi*j*k/n), 0<=k<=n |
---|
206 | [usage] |
---|
207 | ip[0] = 0; // first time only |
---|
208 | dfct(n, a, t, ip, w); |
---|
209 | [parameters] |
---|
210 | n :data length - 1 (int) |
---|
211 | n >= 2, n = power of 2 |
---|
212 | a[0...n] :input/output data (double *) |
---|
213 | output data |
---|
214 | a[k] = C[k], 0<=k<=n |
---|
215 | t[0...n/2] :work area (double *) |
---|
216 | ip[0...*] :work area for bit reversal (int *) |
---|
217 | length of ip >= 2+sqrt(n/4) |
---|
218 | strictly, |
---|
219 | length of ip >= |
---|
220 | 2+(1<<(int)(log(n/4+0.5)/log(2))/2). |
---|
221 | ip[0],ip[1] are pointers of the cos/sin table. |
---|
222 | w[0...n*5/8-1] :cos/sin table (double *) |
---|
223 | w[],ip[] are initialized if ip[0] == 0. |
---|
224 | [remark] |
---|
225 | Inverse of |
---|
226 | a[0] *= 0.5; |
---|
227 | a[n] *= 0.5; |
---|
228 | dfct(n, a, t, ip, w); |
---|
229 | is |
---|
230 | a[0] *= 0.5; |
---|
231 | a[n] *= 0.5; |
---|
232 | dfct(n, a, t, ip, w); |
---|
233 | for (j = 0; j <= n; j++) { |
---|
234 | a[j] *= 2.0 / n; |
---|
235 | } |
---|
236 | . |
---|
237 | |
---|
238 | |
---|
239 | -------- Sine Transform of RDFT (Real Anti-symmetric DFT) -------- |
---|
240 | [definition] |
---|
241 | S[k] = sum_j=1^n-1 a[j]*sin(pi*j*k/n), 0<k<n |
---|
242 | [usage] |
---|
243 | ip[0] = 0; // first time only |
---|
244 | dfst(n, a, t, ip, w); |
---|
245 | [parameters] |
---|
246 | n :data length + 1 (int) |
---|
247 | n >= 2, n = power of 2 |
---|
248 | a[0...n-1] :input/output data (double *) |
---|
249 | output data |
---|
250 | a[k] = S[k], 0<k<n |
---|
251 | (a[0] is used for work area) |
---|
252 | t[0...n/2-1] :work area (double *) |
---|
253 | ip[0...*] :work area for bit reversal (int *) |
---|
254 | length of ip >= 2+sqrt(n/4) |
---|
255 | strictly, |
---|
256 | length of ip >= |
---|
257 | 2+(1<<(int)(log(n/4+0.5)/log(2))/2). |
---|
258 | ip[0],ip[1] are pointers of the cos/sin table. |
---|
259 | w[0...n*5/8-1] :cos/sin table (double *) |
---|
260 | w[],ip[] are initialized if ip[0] == 0. |
---|
261 | [remark] |
---|
262 | Inverse of |
---|
263 | dfst(n, a, t, ip, w); |
---|
264 | is |
---|
265 | dfst(n, a, t, ip, w); |
---|
266 | for (j = 1; j <= n - 1; j++) { |
---|
267 | a[j] *= 2.0 / n; |
---|
268 | } |
---|
269 | . |
---|
270 | |
---|
271 | |
---|
272 | Appendix : |
---|
273 | The cos/sin table is recalculated when the larger table required. |
---|
274 | w[] and ip[] are compatible with all routines. |
---|
275 | */ |
---|
276 | |
---|
277 | |
---|
278 | void cdft(int n, int isgn, double *a, int *ip, double *w) |
---|
279 | { |
---|
280 | void makewt(int nw, int *ip, double *w); |
---|
281 | void bitrv2(int n, int *ip, double *a); |
---|
282 | void bitrv2conj(int n, int *ip, double *a); |
---|
283 | void cftfsub(int n, double *a, double *w); |
---|
284 | void cftbsub(int n, double *a, double *w); |
---|
285 | |
---|
286 | if (n > (ip[0] << 2)) { |
---|
287 | makewt(n >> 2, ip, w); |
---|
288 | } |
---|
289 | if (n > 4) { |
---|
290 | if (isgn >= 0) { |
---|
291 | bitrv2(n, ip + 2, a); |
---|
292 | cftfsub(n, a, w); |
---|
293 | } else { |
---|
294 | bitrv2conj(n, ip + 2, a); |
---|
295 | cftbsub(n, a, w); |
---|
296 | } |
---|
297 | } else if (n == 4) { |
---|
298 | cftfsub(n, a, w); |
---|
299 | } |
---|
300 | } |
---|
301 | |
---|
302 | |
---|
303 | void rdft(int n, int isgn, double *a, int *ip, double *w) |
---|
304 | { |
---|
305 | void makewt(int nw, int *ip, double *w); |
---|
306 | void makect(int nc, int *ip, double *c); |
---|
307 | void bitrv2(int n, int *ip, double *a); |
---|
308 | void cftfsub(int n, double *a, double *w); |
---|
309 | void cftbsub(int n, double *a, double *w); |
---|
310 | void rftfsub(int n, double *a, int nc, double *c); |
---|
311 | void rftbsub(int n, double *a, int nc, double *c); |
---|
312 | int nw, nc; |
---|
313 | double xi; |
---|
314 | |
---|
315 | nw = ip[0]; |
---|
316 | if (n > (nw << 2)) { |
---|
317 | nw = n >> 2; |
---|
318 | makewt(nw, ip, w); |
---|
319 | } |
---|
320 | nc = ip[1]; |
---|
321 | if (n > (nc << 2)) { |
---|
322 | nc = n >> 2; |
---|
323 | makect(nc, ip, w + nw); |
---|
324 | } |
---|
325 | if (isgn >= 0) { |
---|
326 | if (n > 4) { |
---|
327 | bitrv2(n, ip + 2, a); |
---|
328 | cftfsub(n, a, w); |
---|
329 | rftfsub(n, a, nc, w + nw); |
---|
330 | } else if (n == 4) { |
---|
331 | cftfsub(n, a, w); |
---|
332 | } |
---|
333 | xi = a[0] - a[1]; |
---|
334 | a[0] += a[1]; |
---|
335 | a[1] = xi; |
---|
336 | } else { |
---|
337 | a[1] = 0.5 * (a[0] - a[1]); |
---|
338 | a[0] -= a[1]; |
---|
339 | if (n > 4) { |
---|
340 | rftbsub(n, a, nc, w + nw); |
---|
341 | bitrv2(n, ip + 2, a); |
---|
342 | cftbsub(n, a, w); |
---|
343 | } else if (n == 4) { |
---|
344 | cftfsub(n, a, w); |
---|
345 | } |
---|
346 | } |
---|
347 | } |
---|
348 | |
---|
349 | |
---|
350 | void ddct(int n, int isgn, double *a, int *ip, double *w) |
---|
351 | { |
---|
352 | void makewt(int nw, int *ip, double *w); |
---|
353 | void makect(int nc, int *ip, double *c); |
---|
354 | void bitrv2(int n, int *ip, double *a); |
---|
355 | void cftfsub(int n, double *a, double *w); |
---|
356 | void cftbsub(int n, double *a, double *w); |
---|
357 | void rftfsub(int n, double *a, int nc, double *c); |
---|
358 | void rftbsub(int n, double *a, int nc, double *c); |
---|
359 | void dctsub(int n, double *a, int nc, double *c); |
---|
360 | int j, nw, nc; |
---|
361 | double xr; |
---|
362 | |
---|
363 | nw = ip[0]; |
---|
364 | if (n > (nw << 2)) { |
---|
365 | nw = n >> 2; |
---|
366 | makewt(nw, ip, w); |
---|
367 | } |
---|
368 | nc = ip[1]; |
---|
369 | if (n > nc) { |
---|
370 | nc = n; |
---|
371 | makect(nc, ip, w + nw); |
---|
372 | } |
---|
373 | if (isgn < 0) { |
---|
374 | xr = a[n - 1]; |
---|
375 | for (j = n - 2; j >= 2; j -= 2) { |
---|
376 | a[j + 1] = a[j] - a[j - 1]; |
---|
377 | a[j] += a[j - 1]; |
---|
378 | } |
---|
379 | a[1] = a[0] - xr; |
---|
380 | a[0] += xr; |
---|
381 | if (n > 4) { |
---|
382 | rftbsub(n, a, nc, w + nw); |
---|
383 | bitrv2(n, ip + 2, a); |
---|
384 | cftbsub(n, a, w); |
---|
385 | } else if (n == 4) { |
---|
386 | cftfsub(n, a, w); |
---|
387 | } |
---|
388 | } |
---|
389 | dctsub(n, a, nc, w + nw); |
---|
390 | if (isgn >= 0) { |
---|
391 | if (n > 4) { |
---|
392 | bitrv2(n, ip + 2, a); |
---|
393 | cftfsub(n, a, w); |
---|
394 | rftfsub(n, a, nc, w + nw); |
---|
395 | } else if (n == 4) { |
---|
396 | cftfsub(n, a, w); |
---|
397 | } |
---|
398 | xr = a[0] - a[1]; |
---|
399 | a[0] += a[1]; |
---|
400 | for (j = 2; j < n; j += 2) { |
---|
401 | a[j - 1] = a[j] - a[j + 1]; |
---|
402 | a[j] += a[j + 1]; |
---|
403 | } |
---|
404 | a[n - 1] = xr; |
---|
405 | } |
---|
406 | } |
---|
407 | |
---|
408 | |
---|
409 | void ddst(int n, int isgn, double *a, int *ip, double *w) |
---|
410 | { |
---|
411 | void makewt(int nw, int *ip, double *w); |
---|
412 | void makect(int nc, int *ip, double *c); |
---|
413 | void bitrv2(int n, int *ip, double *a); |
---|
414 | void cftfsub(int n, double *a, double *w); |
---|
415 | void cftbsub(int n, double *a, double *w); |
---|
416 | void rftfsub(int n, double *a, int nc, double *c); |
---|
417 | void rftbsub(int n, double *a, int nc, double *c); |
---|
418 | void dstsub(int n, double *a, int nc, double *c); |
---|
419 | int j, nw, nc; |
---|
420 | double xr; |
---|
421 | |
---|
422 | nw = ip[0]; |
---|
423 | if (n > (nw << 2)) { |
---|
424 | nw = n >> 2; |
---|
425 | makewt(nw, ip, w); |
---|
426 | } |
---|
427 | nc = ip[1]; |
---|
428 | if (n > nc) { |
---|
429 | nc = n; |
---|
430 | makect(nc, ip, w + nw); |
---|
431 | } |
---|
432 | if (isgn < 0) { |
---|
433 | xr = a[n - 1]; |
---|
434 | for (j = n - 2; j >= 2; j -= 2) { |
---|
435 | a[j + 1] = -a[j] - a[j - 1]; |
---|
436 | a[j] -= a[j - 1]; |
---|
437 | } |
---|
438 | a[1] = a[0] + xr; |
---|
439 | a[0] -= xr; |
---|
440 | if (n > 4) { |
---|
441 | rftbsub(n, a, nc, w + nw); |
---|
442 | bitrv2(n, ip + 2, a); |
---|
443 | cftbsub(n, a, w); |
---|
444 | } else if (n == 4) { |
---|
445 | cftfsub(n, a, w); |
---|
446 | } |
---|
447 | } |
---|
448 | dstsub(n, a, nc, w + nw); |
---|
449 | if (isgn >= 0) { |
---|
450 | if (n > 4) { |
---|
451 | bitrv2(n, ip + 2, a); |
---|
452 | cftfsub(n, a, w); |
---|
453 | rftfsub(n, a, nc, w + nw); |
---|
454 | } else if (n == 4) { |
---|
455 | cftfsub(n, a, w); |
---|
456 | } |
---|
457 | xr = a[0] - a[1]; |
---|
458 | a[0] += a[1]; |
---|
459 | for (j = 2; j < n; j += 2) { |
---|
460 | a[j - 1] = -a[j] - a[j + 1]; |
---|
461 | a[j] -= a[j + 1]; |
---|
462 | } |
---|
463 | a[n - 1] = -xr; |
---|
464 | } |
---|
465 | } |
---|
466 | |
---|
467 | |
---|
468 | void dfct(int n, double *a, double *t, int *ip, double *w) |
---|
469 | { |
---|
470 | void makewt(int nw, int *ip, double *w); |
---|
471 | void makect(int nc, int *ip, double *c); |
---|
472 | void bitrv2(int n, int *ip, double *a); |
---|
473 | void cftfsub(int n, double *a, double *w); |
---|
474 | void rftfsub(int n, double *a, int nc, double *c); |
---|
475 | void dctsub(int n, double *a, int nc, double *c); |
---|
476 | int j, k, l, m, mh, nw, nc; |
---|
477 | double xr, xi, yr, yi; |
---|
478 | |
---|
479 | nw = ip[0]; |
---|
480 | if (n > (nw << 3)) { |
---|
481 | nw = n >> 3; |
---|
482 | makewt(nw, ip, w); |
---|
483 | } |
---|
484 | nc = ip[1]; |
---|
485 | if (n > (nc << 1)) { |
---|
486 | nc = n >> 1; |
---|
487 | makect(nc, ip, w + nw); |
---|
488 | } |
---|
489 | m = n >> 1; |
---|
490 | yi = a[m]; |
---|
491 | xi = a[0] + a[n]; |
---|
492 | a[0] -= a[n]; |
---|
493 | t[0] = xi - yi; |
---|
494 | t[m] = xi + yi; |
---|
495 | if (n > 2) { |
---|
496 | mh = m >> 1; |
---|
497 | for (j = 1; j < mh; j++) { |
---|
498 | k = m - j; |
---|
499 | xr = a[j] - a[n - j]; |
---|
500 | xi = a[j] + a[n - j]; |
---|
501 | yr = a[k] - a[n - k]; |
---|
502 | yi = a[k] + a[n - k]; |
---|
503 | a[j] = xr; |
---|
504 | a[k] = yr; |
---|
505 | t[j] = xi - yi; |
---|
506 | t[k] = xi + yi; |
---|
507 | } |
---|
508 | t[mh] = a[mh] + a[n - mh]; |
---|
509 | a[mh] -= a[n - mh]; |
---|
510 | dctsub(m, a, nc, w + nw); |
---|
511 | if (m > 4) { |
---|
512 | bitrv2(m, ip + 2, a); |
---|
513 | cftfsub(m, a, w); |
---|
514 | rftfsub(m, a, nc, w + nw); |
---|
515 | } else if (m == 4) { |
---|
516 | cftfsub(m, a, w); |
---|
517 | } |
---|
518 | a[n - 1] = a[0] - a[1]; |
---|
519 | a[1] = a[0] + a[1]; |
---|
520 | for (j = m - 2; j >= 2; j -= 2) { |
---|
521 | a[2 * j + 1] = a[j] + a[j + 1]; |
---|
522 | a[2 * j - 1] = a[j] - a[j + 1]; |
---|
523 | } |
---|
524 | l = 2; |
---|
525 | m = mh; |
---|
526 | while (m >= 2) { |
---|
527 | dctsub(m, t, nc, w + nw); |
---|
528 | if (m > 4) { |
---|
529 | bitrv2(m, ip + 2, t); |
---|
530 | cftfsub(m, t, w); |
---|
531 | rftfsub(m, t, nc, w + nw); |
---|
532 | } else if (m == 4) { |
---|
533 | cftfsub(m, t, w); |
---|
534 | } |
---|
535 | a[n - l] = t[0] - t[1]; |
---|
536 | a[l] = t[0] + t[1]; |
---|
537 | k = 0; |
---|
538 | for (j = 2; j < m; j += 2) { |
---|
539 | k += l << 2; |
---|
540 | a[k - l] = t[j] - t[j + 1]; |
---|
541 | a[k + l] = t[j] + t[j + 1]; |
---|
542 | } |
---|
543 | l <<= 1; |
---|
544 | mh = m >> 1; |
---|
545 | for (j = 0; j < mh; j++) { |
---|
546 | k = m - j; |
---|
547 | t[j] = t[m + k] - t[m + j]; |
---|
548 | t[k] = t[m + k] + t[m + j]; |
---|
549 | } |
---|
550 | t[mh] = t[m + mh]; |
---|
551 | m = mh; |
---|
552 | } |
---|
553 | a[l] = t[0]; |
---|
554 | a[n] = t[2] - t[1]; |
---|
555 | a[0] = t[2] + t[1]; |
---|
556 | } else { |
---|
557 | a[1] = a[0]; |
---|
558 | a[2] = t[0]; |
---|
559 | a[0] = t[1]; |
---|
560 | } |
---|
561 | } |
---|
562 | |
---|
563 | |
---|
564 | void dfst(int n, double *a, double *t, int *ip, double *w) |
---|
565 | { |
---|
566 | void makewt(int nw, int *ip, double *w); |
---|
567 | void makect(int nc, int *ip, double *c); |
---|
568 | void bitrv2(int n, int *ip, double *a); |
---|
569 | void cftfsub(int n, double *a, double *w); |
---|
570 | void rftfsub(int n, double *a, int nc, double *c); |
---|
571 | void dstsub(int n, double *a, int nc, double *c); |
---|
572 | int j, k, l, m, mh, nw, nc; |
---|
573 | double xr, xi, yr, yi; |
---|
574 | |
---|
575 | nw = ip[0]; |
---|
576 | if (n > (nw << 3)) { |
---|
577 | nw = n >> 3; |
---|
578 | makewt(nw, ip, w); |
---|
579 | } |
---|
580 | nc = ip[1]; |
---|
581 | if (n > (nc << 1)) { |
---|
582 | nc = n >> 1; |
---|
583 | makect(nc, ip, w + nw); |
---|
584 | } |
---|
585 | if (n > 2) { |
---|
586 | m = n >> 1; |
---|
587 | mh = m >> 1; |
---|
588 | for (j = 1; j < mh; j++) { |
---|
589 | k = m - j; |
---|
590 | xr = a[j] + a[n - j]; |
---|
591 | xi = a[j] - a[n - j]; |
---|
592 | yr = a[k] + a[n - k]; |
---|
593 | yi = a[k] - a[n - k]; |
---|
594 | a[j] = xr; |
---|
595 | a[k] = yr; |
---|
596 | t[j] = xi + yi; |
---|
597 | t[k] = xi - yi; |
---|
598 | } |
---|
599 | t[0] = a[mh] - a[n - mh]; |
---|
600 | a[mh] += a[n - mh]; |
---|
601 | a[0] = a[m]; |
---|
602 | dstsub(m, a, nc, w + nw); |
---|
603 | if (m > 4) { |
---|
604 | bitrv2(m, ip + 2, a); |
---|
605 | cftfsub(m, a, w); |
---|
606 | rftfsub(m, a, nc, w + nw); |
---|
607 | } else if (m == 4) { |
---|
608 | cftfsub(m, a, w); |
---|
609 | } |
---|
610 | a[n - 1] = a[1] - a[0]; |
---|
611 | a[1] = a[0] + a[1]; |
---|
612 | for (j = m - 2; j >= 2; j -= 2) { |
---|
613 | a[2 * j + 1] = a[j] - a[j + 1]; |
---|
614 | a[2 * j - 1] = -a[j] - a[j + 1]; |
---|
615 | } |
---|
616 | l = 2; |
---|
617 | m = mh; |
---|
618 | while (m >= 2) { |
---|
619 | dstsub(m, t, nc, w + nw); |
---|
620 | if (m > 4) { |
---|
621 | bitrv2(m, ip + 2, t); |
---|
622 | cftfsub(m, t, w); |
---|
623 | rftfsub(m, t, nc, w + nw); |
---|
624 | } else if (m == 4) { |
---|
625 | cftfsub(m, t, w); |
---|
626 | } |
---|
627 | a[n - l] = t[1] - t[0]; |
---|
628 | a[l] = t[0] + t[1]; |
---|
629 | k = 0; |
---|
630 | for (j = 2; j < m; j += 2) { |
---|
631 | k += l << 2; |
---|
632 | a[k - l] = -t[j] - t[j + 1]; |
---|
633 | a[k + l] = t[j] - t[j + 1]; |
---|
634 | } |
---|
635 | l <<= 1; |
---|
636 | mh = m >> 1; |
---|
637 | for (j = 1; j < mh; j++) { |
---|
638 | k = m - j; |
---|
639 | t[j] = t[m + k] + t[m + j]; |
---|
640 | t[k] = t[m + k] - t[m + j]; |
---|
641 | } |
---|
642 | t[0] = t[m + mh]; |
---|
643 | m = mh; |
---|
644 | } |
---|
645 | a[l] = t[0]; |
---|
646 | } |
---|
647 | a[0] = 0; |
---|
648 | } |
---|
649 | |
---|
650 | |
---|
651 | /* -------- initializing routines -------- */ |
---|
652 | |
---|
653 | |
---|
654 | #include <math.h> |
---|
655 | |
---|
656 | void makewt(int nw, int *ip, double *w) |
---|
657 | { |
---|
658 | void bitrv2(int n, int *ip, double *a); |
---|
659 | int j, nwh; |
---|
660 | double delta, x, y; |
---|
661 | |
---|
662 | ip[0] = nw; |
---|
663 | ip[1] = 1; |
---|
664 | if (nw > 2) { |
---|
665 | nwh = nw >> 1; |
---|
666 | delta = atan(1.0) / nwh; |
---|
667 | w[0] = 1; |
---|
668 | w[1] = 0; |
---|
669 | w[nwh] = cos(delta * nwh); |
---|
670 | w[nwh + 1] = w[nwh]; |
---|
671 | if (nwh > 2) { |
---|
672 | for (j = 2; j < nwh; j += 2) { |
---|
673 | x = cos(delta * j); |
---|
674 | y = sin(delta * j); |
---|
675 | w[j] = x; |
---|
676 | w[j + 1] = y; |
---|
677 | w[nw - j] = y; |
---|
678 | w[nw - j + 1] = x; |
---|
679 | } |
---|
680 | for (j = nwh - 2; j >= 2; j -= 2) { |
---|
681 | x = w[2 * j]; |
---|
682 | y = w[2 * j + 1]; |
---|
683 | w[nwh + j] = x; |
---|
684 | w[nwh + j + 1] = y; |
---|
685 | } |
---|
686 | bitrv2(nw, ip + 2, w); |
---|
687 | } |
---|
688 | } |
---|
689 | } |
---|
690 | |
---|
691 | |
---|
692 | void makect(int nc, int *ip, double *c) |
---|
693 | { |
---|
694 | int j, nch; |
---|
695 | double delta; |
---|
696 | |
---|
697 | ip[1] = nc; |
---|
698 | if (nc > 1) { |
---|
699 | nch = nc >> 1; |
---|
700 | delta = atan(1.0) / nch; |
---|
701 | c[0] = cos(delta * nch); |
---|
702 | c[nch] = 0.5 * c[0]; |
---|
703 | for (j = 1; j < nch; j++) { |
---|
704 | c[j] = 0.5 * cos(delta * j); |
---|
705 | c[nc - j] = 0.5 * sin(delta * j); |
---|
706 | } |
---|
707 | } |
---|
708 | } |
---|
709 | |
---|
710 | |
---|
711 | /* -------- child routines -------- */ |
---|
712 | |
---|
713 | |
---|
714 | void bitrv2(int n, int *ip, double *a) |
---|
715 | { |
---|
716 | int j, j1, k, k1, l, m, m2; |
---|
717 | double xr, xi, yr, yi; |
---|
718 | |
---|
719 | ip[0] = 0; |
---|
720 | l = n; |
---|
721 | m = 1; |
---|
722 | while ((m << 3) < l) { |
---|
723 | l >>= 1; |
---|
724 | for (j = 0; j < m; j++) { |
---|
725 | ip[m + j] = ip[j] + l; |
---|
726 | } |
---|
727 | m <<= 1; |
---|
728 | } |
---|
729 | m2 = 2 * m; |
---|
730 | if ((m << 3) == l) { |
---|
731 | for (k = 0; k < m; k++) { |
---|
732 | for (j = 0; j < k; j++) { |
---|
733 | j1 = 2 * j + ip[k]; |
---|
734 | k1 = 2 * k + ip[j]; |
---|
735 | xr = a[j1]; |
---|
736 | xi = a[j1 + 1]; |
---|
737 | yr = a[k1]; |
---|
738 | yi = a[k1 + 1]; |
---|
739 | a[j1] = yr; |
---|
740 | a[j1 + 1] = yi; |
---|
741 | a[k1] = xr; |
---|
742 | a[k1 + 1] = xi; |
---|
743 | j1 += m2; |
---|
744 | k1 += 2 * m2; |
---|
745 | xr = a[j1]; |
---|
746 | xi = a[j1 + 1]; |
---|
747 | yr = a[k1]; |
---|
748 | yi = a[k1 + 1]; |
---|
749 | a[j1] = yr; |
---|
750 | a[j1 + 1] = yi; |
---|
751 | a[k1] = xr; |
---|
752 | a[k1 + 1] = xi; |
---|
753 | j1 += m2; |
---|
754 | k1 -= m2; |
---|
755 | xr = a[j1]; |
---|
756 | xi = a[j1 + 1]; |
---|
757 | yr = a[k1]; |
---|
758 | yi = a[k1 + 1]; |
---|
759 | a[j1] = yr; |
---|
760 | a[j1 + 1] = yi; |
---|
761 | a[k1] = xr; |
---|
762 | a[k1 + 1] = xi; |
---|
763 | j1 += m2; |
---|
764 | k1 += 2 * m2; |
---|
765 | xr = a[j1]; |
---|
766 | xi = a[j1 + 1]; |
---|
767 | yr = a[k1]; |
---|
768 | yi = a[k1 + 1]; |
---|
769 | a[j1] = yr; |
---|
770 | a[j1 + 1] = yi; |
---|
771 | a[k1] = xr; |
---|
772 | a[k1 + 1] = xi; |
---|
773 | } |
---|
774 | j1 = 2 * k + m2 + ip[k]; |
---|
775 | k1 = j1 + m2; |
---|
776 | xr = a[j1]; |
---|
777 | xi = a[j1 + 1]; |
---|
778 | yr = a[k1]; |
---|
779 | yi = a[k1 + 1]; |
---|
780 | a[j1] = yr; |
---|
781 | a[j1 + 1] = yi; |
---|
782 | a[k1] = xr; |
---|
783 | a[k1 + 1] = xi; |
---|
784 | } |
---|
785 | } else { |
---|
786 | for (k = 1; k < m; k++) { |
---|
787 | for (j = 0; j < k; j++) { |
---|
788 | j1 = 2 * j + ip[k]; |
---|
789 | k1 = 2 * k + ip[j]; |
---|
790 | xr = a[j1]; |
---|
791 | xi = a[j1 + 1]; |
---|
792 | yr = a[k1]; |
---|
793 | yi = a[k1 + 1]; |
---|
794 | a[j1] = yr; |
---|
795 | a[j1 + 1] = yi; |
---|
796 | a[k1] = xr; |
---|
797 | a[k1 + 1] = xi; |
---|
798 | j1 += m2; |
---|
799 | k1 += m2; |
---|
800 | xr = a[j1]; |
---|
801 | xi = a[j1 + 1]; |
---|
802 | yr = a[k1]; |
---|
803 | yi = a[k1 + 1]; |
---|
804 | a[j1] = yr; |
---|
805 | a[j1 + 1] = yi; |
---|
806 | a[k1] = xr; |
---|
807 | a[k1 + 1] = xi; |
---|
808 | } |
---|
809 | } |
---|
810 | } |
---|
811 | } |
---|
812 | |
---|
813 | |
---|
814 | void bitrv2conj(int n, int *ip, double *a) |
---|
815 | { |
---|
816 | int j, j1, k, k1, l, m, m2; |
---|
817 | double xr, xi, yr, yi; |
---|
818 | |
---|
819 | ip[0] = 0; |
---|
820 | l = n; |
---|
821 | m = 1; |
---|
822 | while ((m << 3) < l) { |
---|
823 | l >>= 1; |
---|
824 | for (j = 0; j < m; j++) { |
---|
825 | ip[m + j] = ip[j] + l; |
---|
826 | } |
---|
827 | m <<= 1; |
---|
828 | } |
---|
829 | m2 = 2 * m; |
---|
830 | if ((m << 3) == l) { |
---|
831 | for (k = 0; k < m; k++) { |
---|
832 | for (j = 0; j < k; j++) { |
---|
833 | j1 = 2 * j + ip[k]; |
---|
834 | k1 = 2 * k + ip[j]; |
---|
835 | xr = a[j1]; |
---|
836 | xi = -a[j1 + 1]; |
---|
837 | yr = a[k1]; |
---|
838 | yi = -a[k1 + 1]; |
---|
839 | a[j1] = yr; |
---|
840 | a[j1 + 1] = yi; |
---|
841 | a[k1] = xr; |
---|
842 | a[k1 + 1] = xi; |
---|
843 | j1 += m2; |
---|
844 | k1 += 2 * m2; |
---|
845 | xr = a[j1]; |
---|
846 | xi = -a[j1 + 1]; |
---|
847 | yr = a[k1]; |
---|
848 | yi = -a[k1 + 1]; |
---|
849 | a[j1] = yr; |
---|
850 | a[j1 + 1] = yi; |
---|
851 | a[k1] = xr; |
---|
852 | a[k1 + 1] = xi; |
---|
853 | j1 += m2; |
---|
854 | k1 -= m2; |
---|
855 | xr = a[j1]; |
---|
856 | xi = -a[j1 + 1]; |
---|
857 | yr = a[k1]; |
---|
858 | yi = -a[k1 + 1]; |
---|
859 | a[j1] = yr; |
---|
860 | a[j1 + 1] = yi; |
---|
861 | a[k1] = xr; |
---|
862 | a[k1 + 1] = xi; |
---|
863 | j1 += m2; |
---|
864 | k1 += 2 * m2; |
---|
865 | xr = a[j1]; |
---|
866 | xi = -a[j1 + 1]; |
---|
867 | yr = a[k1]; |
---|
868 | yi = -a[k1 + 1]; |
---|
869 | a[j1] = yr; |
---|
870 | a[j1 + 1] = yi; |
---|
871 | a[k1] = xr; |
---|
872 | a[k1 + 1] = xi; |
---|
873 | } |
---|
874 | k1 = 2 * k + ip[k]; |
---|
875 | a[k1 + 1] = -a[k1 + 1]; |
---|
876 | j1 = k1 + m2; |
---|
877 | k1 = j1 + m2; |
---|
878 | xr = a[j1]; |
---|
879 | xi = -a[j1 + 1]; |
---|
880 | yr = a[k1]; |
---|
881 | yi = -a[k1 + 1]; |
---|
882 | a[j1] = yr; |
---|
883 | a[j1 + 1] = yi; |
---|
884 | a[k1] = xr; |
---|
885 | a[k1 + 1] = xi; |
---|
886 | k1 += m2; |
---|
887 | a[k1 + 1] = -a[k1 + 1]; |
---|
888 | } |
---|
889 | } else { |
---|
890 | a[1] = -a[1]; |
---|
891 | a[m2 + 1] = -a[m2 + 1]; |
---|
892 | for (k = 1; k < m; k++) { |
---|
893 | for (j = 0; j < k; j++) { |
---|
894 | j1 = 2 * j + ip[k]; |
---|
895 | k1 = 2 * k + ip[j]; |
---|
896 | xr = a[j1]; |
---|
897 | xi = -a[j1 + 1]; |
---|
898 | yr = a[k1]; |
---|
899 | yi = -a[k1 + 1]; |
---|
900 | a[j1] = yr; |
---|
901 | a[j1 + 1] = yi; |
---|
902 | a[k1] = xr; |
---|
903 | a[k1 + 1] = xi; |
---|
904 | j1 += m2; |
---|
905 | k1 += m2; |
---|
906 | xr = a[j1]; |
---|
907 | xi = -a[j1 + 1]; |
---|
908 | yr = a[k1]; |
---|
909 | yi = -a[k1 + 1]; |
---|
910 | a[j1] = yr; |
---|
911 | a[j1 + 1] = yi; |
---|
912 | a[k1] = xr; |
---|
913 | a[k1 + 1] = xi; |
---|
914 | } |
---|
915 | k1 = 2 * k + ip[k]; |
---|
916 | a[k1 + 1] = -a[k1 + 1]; |
---|
917 | a[k1 + m2 + 1] = -a[k1 + m2 + 1]; |
---|
918 | } |
---|
919 | } |
---|
920 | } |
---|
921 | |
---|
922 | |
---|
923 | void cftfsub(int n, double *a, double *w) |
---|
924 | { |
---|
925 | void cft1st(int n, double *a, double *w); |
---|
926 | void cftmdl(int n, int l, double *a, double *w); |
---|
927 | int j, j1, j2, j3, l; |
---|
928 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; |
---|
929 | |
---|
930 | l = 2; |
---|
931 | if (n >= 16) { |
---|
932 | cft1st(n, a, w); |
---|
933 | l = 16; |
---|
934 | while ((l << 3) <= n) { |
---|
935 | cftmdl(n, l, a, w); |
---|
936 | l <<= 3; |
---|
937 | } |
---|
938 | } |
---|
939 | if ((l << 1) < n) { |
---|
940 | for (j = 0; j < l; j += 2) { |
---|
941 | j1 = j + l; |
---|
942 | j2 = j1 + l; |
---|
943 | j3 = j2 + l; |
---|
944 | x0r = a[j] + a[j1]; |
---|
945 | x0i = a[j + 1] + a[j1 + 1]; |
---|
946 | x1r = a[j] - a[j1]; |
---|
947 | x1i = a[j + 1] - a[j1 + 1]; |
---|
948 | x2r = a[j2] + a[j3]; |
---|
949 | x2i = a[j2 + 1] + a[j3 + 1]; |
---|
950 | x3r = a[j2] - a[j3]; |
---|
951 | x3i = a[j2 + 1] - a[j3 + 1]; |
---|
952 | a[j] = x0r + x2r; |
---|
953 | a[j + 1] = x0i + x2i; |
---|
954 | a[j2] = x0r - x2r; |
---|
955 | a[j2 + 1] = x0i - x2i; |
---|
956 | a[j1] = x1r - x3i; |
---|
957 | a[j1 + 1] = x1i + x3r; |
---|
958 | a[j3] = x1r + x3i; |
---|
959 | a[j3 + 1] = x1i - x3r; |
---|
960 | } |
---|
961 | } else if ((l << 1) == n) { |
---|
962 | for (j = 0; j < l; j += 2) { |
---|
963 | j1 = j + l; |
---|
964 | x0r = a[j] - a[j1]; |
---|
965 | x0i = a[j + 1] - a[j1 + 1]; |
---|
966 | a[j] += a[j1]; |
---|
967 | a[j + 1] += a[j1 + 1]; |
---|
968 | a[j1] = x0r; |
---|
969 | a[j1 + 1] = x0i; |
---|
970 | } |
---|
971 | } |
---|
972 | } |
---|
973 | |
---|
974 | |
---|
975 | void cftbsub(int n, double *a, double *w) |
---|
976 | { |
---|
977 | void cft1st(int n, double *a, double *w); |
---|
978 | void cftmdl(int n, int l, double *a, double *w); |
---|
979 | int j, j1, j2, j3, j4, j5, j6, j7, l; |
---|
980 | double wn4r, x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, |
---|
981 | y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, |
---|
982 | y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i; |
---|
983 | |
---|
984 | l = 2; |
---|
985 | if (n > 16) { |
---|
986 | cft1st(n, a, w); |
---|
987 | l = 16; |
---|
988 | while ((l << 3) < n) { |
---|
989 | cftmdl(n, l, a, w); |
---|
990 | l <<= 3; |
---|
991 | } |
---|
992 | } |
---|
993 | if ((l << 2) < n) { |
---|
994 | wn4r = w[2]; |
---|
995 | for (j = 0; j < l; j += 2) { |
---|
996 | j1 = j + l; |
---|
997 | j2 = j1 + l; |
---|
998 | j3 = j2 + l; |
---|
999 | j4 = j3 + l; |
---|
1000 | j5 = j4 + l; |
---|
1001 | j6 = j5 + l; |
---|
1002 | j7 = j6 + l; |
---|
1003 | x0r = a[j] + a[j1]; |
---|
1004 | x0i = -a[j + 1] - a[j1 + 1]; |
---|
1005 | x1r = a[j] - a[j1]; |
---|
1006 | x1i = -a[j + 1] + a[j1 + 1]; |
---|
1007 | x2r = a[j2] + a[j3]; |
---|
1008 | x2i = a[j2 + 1] + a[j3 + 1]; |
---|
1009 | x3r = a[j2] - a[j3]; |
---|
1010 | x3i = a[j2 + 1] - a[j3 + 1]; |
---|
1011 | y0r = x0r + x2r; |
---|
1012 | y0i = x0i - x2i; |
---|
1013 | y2r = x0r - x2r; |
---|
1014 | y2i = x0i + x2i; |
---|
1015 | y1r = x1r - x3i; |
---|
1016 | y1i = x1i - x3r; |
---|
1017 | y3r = x1r + x3i; |
---|
1018 | y3i = x1i + x3r; |
---|
1019 | x0r = a[j4] + a[j5]; |
---|
1020 | x0i = a[j4 + 1] + a[j5 + 1]; |
---|
1021 | x1r = a[j4] - a[j5]; |
---|
1022 | x1i = a[j4 + 1] - a[j5 + 1]; |
---|
1023 | x2r = a[j6] + a[j7]; |
---|
1024 | x2i = a[j6 + 1] + a[j7 + 1]; |
---|
1025 | x3r = a[j6] - a[j7]; |
---|
1026 | x3i = a[j6 + 1] - a[j7 + 1]; |
---|
1027 | y4r = x0r + x2r; |
---|
1028 | y4i = x0i + x2i; |
---|
1029 | y6r = x0r - x2r; |
---|
1030 | y6i = x0i - x2i; |
---|
1031 | x0r = x1r - x3i; |
---|
1032 | x0i = x1i + x3r; |
---|
1033 | x2r = x1r + x3i; |
---|
1034 | x2i = x1i - x3r; |
---|
1035 | y5r = wn4r * (x0r - x0i); |
---|
1036 | y5i = wn4r * (x0r + x0i); |
---|
1037 | y7r = wn4r * (x2r - x2i); |
---|
1038 | y7i = wn4r * (x2r + x2i); |
---|
1039 | a[j1] = y1r + y5r; |
---|
1040 | a[j1 + 1] = y1i - y5i; |
---|
1041 | a[j5] = y1r - y5r; |
---|
1042 | a[j5 + 1] = y1i + y5i; |
---|
1043 | a[j3] = y3r - y7i; |
---|
1044 | a[j3 + 1] = y3i - y7r; |
---|
1045 | a[j7] = y3r + y7i; |
---|
1046 | a[j7 + 1] = y3i + y7r; |
---|
1047 | a[j] = y0r + y4r; |
---|
1048 | a[j + 1] = y0i - y4i; |
---|
1049 | a[j4] = y0r - y4r; |
---|
1050 | a[j4 + 1] = y0i + y4i; |
---|
1051 | a[j2] = y2r - y6i; |
---|
1052 | a[j2 + 1] = y2i - y6r; |
---|
1053 | a[j6] = y2r + y6i; |
---|
1054 | a[j6 + 1] = y2i + y6r; |
---|
1055 | } |
---|
1056 | } else if ((l << 2) == n) { |
---|
1057 | for (j = 0; j < l; j += 2) { |
---|
1058 | j1 = j + l; |
---|
1059 | j2 = j1 + l; |
---|
1060 | j3 = j2 + l; |
---|
1061 | x0r = a[j] + a[j1]; |
---|
1062 | x0i = -a[j + 1] - a[j1 + 1]; |
---|
1063 | x1r = a[j] - a[j1]; |
---|
1064 | x1i = -a[j + 1] + a[j1 + 1]; |
---|
1065 | x2r = a[j2] + a[j3]; |
---|
1066 | x2i = a[j2 + 1] + a[j3 + 1]; |
---|
1067 | x3r = a[j2] - a[j3]; |
---|
1068 | x3i = a[j2 + 1] - a[j3 + 1]; |
---|
1069 | a[j] = x0r + x2r; |
---|
1070 | a[j + 1] = x0i - x2i; |
---|
1071 | a[j2] = x0r - x2r; |
---|
1072 | a[j2 + 1] = x0i + x2i; |
---|
1073 | a[j1] = x1r - x3i; |
---|
1074 | a[j1 + 1] = x1i - x3r; |
---|
1075 | a[j3] = x1r + x3i; |
---|
1076 | a[j3 + 1] = x1i + x3r; |
---|
1077 | } |
---|
1078 | } else { |
---|
1079 | for (j = 0; j < l; j += 2) { |
---|
1080 | j1 = j + l; |
---|
1081 | x0r = a[j] - a[j1]; |
---|
1082 | x0i = -a[j + 1] + a[j1 + 1]; |
---|
1083 | a[j] += a[j1]; |
---|
1084 | a[j + 1] = -a[j + 1] - a[j1 + 1]; |
---|
1085 | a[j1] = x0r; |
---|
1086 | a[j1 + 1] = x0i; |
---|
1087 | } |
---|
1088 | } |
---|
1089 | } |
---|
1090 | |
---|
1091 | |
---|
1092 | void cft1st(int n, double *a, double *w) |
---|
1093 | { |
---|
1094 | int j, k1; |
---|
1095 | double wn4r, wtmp, wk1r, wk1i, wk2r, wk2i, wk3r, wk3i, |
---|
1096 | wk4r, wk4i, wk5r, wk5i, wk6r, wk6i, wk7r, wk7i; |
---|
1097 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, |
---|
1098 | y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, |
---|
1099 | y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i; |
---|
1100 | |
---|
1101 | wn4r = w[2]; |
---|
1102 | x0r = a[0] + a[2]; |
---|
1103 | x0i = a[1] + a[3]; |
---|
1104 | x1r = a[0] - a[2]; |
---|
1105 | x1i = a[1] - a[3]; |
---|
1106 | x2r = a[4] + a[6]; |
---|
1107 | x2i = a[5] + a[7]; |
---|
1108 | x3r = a[4] - a[6]; |
---|
1109 | x3i = a[5] - a[7]; |
---|
1110 | y0r = x0r + x2r; |
---|
1111 | y0i = x0i + x2i; |
---|
1112 | y2r = x0r - x2r; |
---|
1113 | y2i = x0i - x2i; |
---|
1114 | y1r = x1r - x3i; |
---|
1115 | y1i = x1i + x3r; |
---|
1116 | y3r = x1r + x3i; |
---|
1117 | y3i = x1i - x3r; |
---|
1118 | x0r = a[8] + a[10]; |
---|
1119 | x0i = a[9] + a[11]; |
---|
1120 | x1r = a[8] - a[10]; |
---|
1121 | x1i = a[9] - a[11]; |
---|
1122 | x2r = a[12] + a[14]; |
---|
1123 | x2i = a[13] + a[15]; |
---|
1124 | x3r = a[12] - a[14]; |
---|
1125 | x3i = a[13] - a[15]; |
---|
1126 | y4r = x0r + x2r; |
---|
1127 | y4i = x0i + x2i; |
---|
1128 | y6r = x0r - x2r; |
---|
1129 | y6i = x0i - x2i; |
---|
1130 | x0r = x1r - x3i; |
---|
1131 | x0i = x1i + x3r; |
---|
1132 | x2r = x1r + x3i; |
---|
1133 | x2i = x1i - x3r; |
---|
1134 | y5r = wn4r * (x0r - x0i); |
---|
1135 | y5i = wn4r * (x0r + x0i); |
---|
1136 | y7r = wn4r * (x2r - x2i); |
---|
1137 | y7i = wn4r * (x2r + x2i); |
---|
1138 | a[2] = y1r + y5r; |
---|
1139 | a[3] = y1i + y5i; |
---|
1140 | a[10] = y1r - y5r; |
---|
1141 | a[11] = y1i - y5i; |
---|
1142 | a[6] = y3r - y7i; |
---|
1143 | a[7] = y3i + y7r; |
---|
1144 | a[14] = y3r + y7i; |
---|
1145 | a[15] = y3i - y7r; |
---|
1146 | a[0] = y0r + y4r; |
---|
1147 | a[1] = y0i + y4i; |
---|
1148 | a[8] = y0r - y4r; |
---|
1149 | a[9] = y0i - y4i; |
---|
1150 | a[4] = y2r - y6i; |
---|
1151 | a[5] = y2i + y6r; |
---|
1152 | a[12] = y2r + y6i; |
---|
1153 | a[13] = y2i - y6r; |
---|
1154 | if (n > 16) { |
---|
1155 | wk1r = w[4]; |
---|
1156 | wk1i = w[5]; |
---|
1157 | x0r = a[16] + a[18]; |
---|
1158 | x0i = a[17] + a[19]; |
---|
1159 | x1r = a[16] - a[18]; |
---|
1160 | x1i = a[17] - a[19]; |
---|
1161 | x2r = a[20] + a[22]; |
---|
1162 | x2i = a[21] + a[23]; |
---|
1163 | x3r = a[20] - a[22]; |
---|
1164 | x3i = a[21] - a[23]; |
---|
1165 | y0r = x0r + x2r; |
---|
1166 | y0i = x0i + x2i; |
---|
1167 | y2r = x0r - x2r; |
---|
1168 | y2i = x0i - x2i; |
---|
1169 | y1r = x1r - x3i; |
---|
1170 | y1i = x1i + x3r; |
---|
1171 | y3r = x1r + x3i; |
---|
1172 | y3i = x1i - x3r; |
---|
1173 | x0r = a[24] + a[26]; |
---|
1174 | x0i = a[25] + a[27]; |
---|
1175 | x1r = a[24] - a[26]; |
---|
1176 | x1i = a[25] - a[27]; |
---|
1177 | x2r = a[28] + a[30]; |
---|
1178 | x2i = a[29] + a[31]; |
---|
1179 | x3r = a[28] - a[30]; |
---|
1180 | x3i = a[29] - a[31]; |
---|
1181 | y4r = x0r + x2r; |
---|
1182 | y4i = x0i + x2i; |
---|
1183 | y6r = x0r - x2r; |
---|
1184 | y6i = x0i - x2i; |
---|
1185 | x0r = x1r - x3i; |
---|
1186 | x0i = x1i + x3r; |
---|
1187 | x2r = x1r + x3i; |
---|
1188 | x2i = x3r - x1i; |
---|
1189 | y5r = wk1i * x0r - wk1r * x0i; |
---|
1190 | y5i = wk1i * x0i + wk1r * x0r; |
---|
1191 | y7r = wk1r * x2r + wk1i * x2i; |
---|
1192 | y7i = wk1r * x2i - wk1i * x2r; |
---|
1193 | x0r = wk1r * y1r - wk1i * y1i; |
---|
1194 | x0i = wk1r * y1i + wk1i * y1r; |
---|
1195 | a[18] = x0r + y5r; |
---|
1196 | a[19] = x0i + y5i; |
---|
1197 | a[26] = y5i - x0i; |
---|
1198 | a[27] = x0r - y5r; |
---|
1199 | x0r = wk1i * y3r - wk1r * y3i; |
---|
1200 | x0i = wk1i * y3i + wk1r * y3r; |
---|
1201 | a[22] = x0r - y7r; |
---|
1202 | a[23] = x0i + y7i; |
---|
1203 | a[30] = y7i - x0i; |
---|
1204 | a[31] = x0r + y7r; |
---|
1205 | a[16] = y0r + y4r; |
---|
1206 | a[17] = y0i + y4i; |
---|
1207 | a[24] = y4i - y0i; |
---|
1208 | a[25] = y0r - y4r; |
---|
1209 | x0r = y2r - y6i; |
---|
1210 | x0i = y2i + y6r; |
---|
1211 | a[20] = wn4r * (x0r - x0i); |
---|
1212 | a[21] = wn4r * (x0i + x0r); |
---|
1213 | x0r = y6r - y2i; |
---|
1214 | x0i = y2r + y6i; |
---|
1215 | a[28] = wn4r * (x0r - x0i); |
---|
1216 | a[29] = wn4r * (x0i + x0r); |
---|
1217 | k1 = 4; |
---|
1218 | for (j = 32; j < n; j += 16) { |
---|
1219 | k1 += 4; |
---|
1220 | wk1r = w[k1]; |
---|
1221 | wk1i = w[k1 + 1]; |
---|
1222 | wk2r = w[k1 + 2]; |
---|
1223 | wk2i = w[k1 + 3]; |
---|
1224 | wtmp = 2 * wk2i; |
---|
1225 | wk3r = wk1r - wtmp * wk1i; |
---|
1226 | wk3i = wtmp * wk1r - wk1i; |
---|
1227 | wk4r = 1 - wtmp * wk2i; |
---|
1228 | wk4i = wtmp * wk2r; |
---|
1229 | wtmp = 2 * wk4i; |
---|
1230 | wk5r = wk3r - wtmp * wk1i; |
---|
1231 | wk5i = wtmp * wk1r - wk3i; |
---|
1232 | wk6r = wk2r - wtmp * wk2i; |
---|
1233 | wk6i = wtmp * wk2r - wk2i; |
---|
1234 | wk7r = wk1r - wtmp * wk3i; |
---|
1235 | wk7i = wtmp * wk3r - wk1i; |
---|
1236 | x0r = a[j] + a[j + 2]; |
---|
1237 | x0i = a[j + 1] + a[j + 3]; |
---|
1238 | x1r = a[j] - a[j + 2]; |
---|
1239 | x1i = a[j + 1] - a[j + 3]; |
---|
1240 | x2r = a[j + 4] + a[j + 6]; |
---|
1241 | x2i = a[j + 5] + a[j + 7]; |
---|
1242 | x3r = a[j + 4] - a[j + 6]; |
---|
1243 | x3i = a[j + 5] - a[j + 7]; |
---|
1244 | y0r = x0r + x2r; |
---|
1245 | y0i = x0i + x2i; |
---|
1246 | y2r = x0r - x2r; |
---|
1247 | y2i = x0i - x2i; |
---|
1248 | y1r = x1r - x3i; |
---|
1249 | y1i = x1i + x3r; |
---|
1250 | y3r = x1r + x3i; |
---|
1251 | y3i = x1i - x3r; |
---|
1252 | x0r = a[j + 8] + a[j + 10]; |
---|
1253 | x0i = a[j + 9] + a[j + 11]; |
---|
1254 | x1r = a[j + 8] - a[j + 10]; |
---|
1255 | x1i = a[j + 9] - a[j + 11]; |
---|
1256 | x2r = a[j + 12] + a[j + 14]; |
---|
1257 | x2i = a[j + 13] + a[j + 15]; |
---|
1258 | x3r = a[j + 12] - a[j + 14]; |
---|
1259 | x3i = a[j + 13] - a[j + 15]; |
---|
1260 | y4r = x0r + x2r; |
---|
1261 | y4i = x0i + x2i; |
---|
1262 | y6r = x0r - x2r; |
---|
1263 | y6i = x0i - x2i; |
---|
1264 | x0r = x1r - x3i; |
---|
1265 | x0i = x1i + x3r; |
---|
1266 | x2r = x1r + x3i; |
---|
1267 | x2i = x1i - x3r; |
---|
1268 | y5r = wn4r * (x0r - x0i); |
---|
1269 | y5i = wn4r * (x0r + x0i); |
---|
1270 | y7r = wn4r * (x2r - x2i); |
---|
1271 | y7i = wn4r * (x2r + x2i); |
---|
1272 | x0r = y1r + y5r; |
---|
1273 | x0i = y1i + y5i; |
---|
1274 | a[j + 2] = wk1r * x0r - wk1i * x0i; |
---|
1275 | a[j + 3] = wk1r * x0i + wk1i * x0r; |
---|
1276 | x0r = y1r - y5r; |
---|
1277 | x0i = y1i - y5i; |
---|
1278 | a[j + 10] = wk5r * x0r - wk5i * x0i; |
---|
1279 | a[j + 11] = wk5r * x0i + wk5i * x0r; |
---|
1280 | x0r = y3r - y7i; |
---|
1281 | x0i = y3i + y7r; |
---|
1282 | a[j + 6] = wk3r * x0r - wk3i * x0i; |
---|
1283 | a[j + 7] = wk3r * x0i + wk3i * x0r; |
---|
1284 | x0r = y3r + y7i; |
---|
1285 | x0i = y3i - y7r; |
---|
1286 | a[j + 14] = wk7r * x0r - wk7i * x0i; |
---|
1287 | a[j + 15] = wk7r * x0i + wk7i * x0r; |
---|
1288 | a[j] = y0r + y4r; |
---|
1289 | a[j + 1] = y0i + y4i; |
---|
1290 | x0r = y0r - y4r; |
---|
1291 | x0i = y0i - y4i; |
---|
1292 | a[j + 8] = wk4r * x0r - wk4i * x0i; |
---|
1293 | a[j + 9] = wk4r * x0i + wk4i * x0r; |
---|
1294 | x0r = y2r - y6i; |
---|
1295 | x0i = y2i + y6r; |
---|
1296 | a[j + 4] = wk2r * x0r - wk2i * x0i; |
---|
1297 | a[j + 5] = wk2r * x0i + wk2i * x0r; |
---|
1298 | x0r = y2r + y6i; |
---|
1299 | x0i = y2i - y6r; |
---|
1300 | a[j + 12] = wk6r * x0r - wk6i * x0i; |
---|
1301 | a[j + 13] = wk6r * x0i + wk6i * x0r; |
---|
1302 | } |
---|
1303 | } |
---|
1304 | } |
---|
1305 | |
---|
1306 | |
---|
1307 | void cftmdl(int n, int l, double *a, double *w) |
---|
1308 | { |
---|
1309 | int j, j1, j2, j3, j4, j5, j6, j7, k, k1, m; |
---|
1310 | double wn4r, wtmp, wk1r, wk1i, wk2r, wk2i, wk3r, wk3i, |
---|
1311 | wk4r, wk4i, wk5r, wk5i, wk6r, wk6i, wk7r, wk7i; |
---|
1312 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, |
---|
1313 | y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, |
---|
1314 | y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i; |
---|
1315 | |
---|
1316 | m = l << 3; |
---|
1317 | wn4r = w[2]; |
---|
1318 | for (j = 0; j < l; j += 2) { |
---|
1319 | j1 = j + l; |
---|
1320 | j2 = j1 + l; |
---|
1321 | j3 = j2 + l; |
---|
1322 | j4 = j3 + l; |
---|
1323 | j5 = j4 + l; |
---|
1324 | j6 = j5 + l; |
---|
1325 | j7 = j6 + l; |
---|
1326 | x0r = a[j] + a[j1]; |
---|
1327 | x0i = a[j + 1] + a[j1 + 1]; |
---|
1328 | x1r = a[j] - a[j1]; |
---|
1329 | x1i = a[j + 1] - a[j1 + 1]; |
---|
1330 | x2r = a[j2] + a[j3]; |
---|
1331 | x2i = a[j2 + 1] + a[j3 + 1]; |
---|
1332 | x3r = a[j2] - a[j3]; |
---|
1333 | x3i = a[j2 + 1] - a[j3 + 1]; |
---|
1334 | y0r = x0r + x2r; |
---|
1335 | y0i = x0i + x2i; |
---|
1336 | y2r = x0r - x2r; |
---|
1337 | y2i = x0i - x2i; |
---|
1338 | y1r = x1r - x3i; |
---|
1339 | y1i = x1i + x3r; |
---|
1340 | y3r = x1r + x3i; |
---|
1341 | y3i = x1i - x3r; |
---|
1342 | x0r = a[j4] + a[j5]; |
---|
1343 | x0i = a[j4 + 1] + a[j5 + 1]; |
---|
1344 | x1r = a[j4] - a[j5]; |
---|
1345 | x1i = a[j4 + 1] - a[j5 + 1]; |
---|
1346 | x2r = a[j6] + a[j7]; |
---|
1347 | x2i = a[j6 + 1] + a[j7 + 1]; |
---|
1348 | x3r = a[j6] - a[j7]; |
---|
1349 | x3i = a[j6 + 1] - a[j7 + 1]; |
---|
1350 | y4r = x0r + x2r; |
---|
1351 | y4i = x0i + x2i; |
---|
1352 | y6r = x0r - x2r; |
---|
1353 | y6i = x0i - x2i; |
---|
1354 | x0r = x1r - x3i; |
---|
1355 | x0i = x1i + x3r; |
---|
1356 | x2r = x1r + x3i; |
---|
1357 | x2i = x1i - x3r; |
---|
1358 | y5r = wn4r * (x0r - x0i); |
---|
1359 | y5i = wn4r * (x0r + x0i); |
---|
1360 | y7r = wn4r * (x2r - x2i); |
---|
1361 | y7i = wn4r * (x2r + x2i); |
---|
1362 | a[j1] = y1r + y5r; |
---|
1363 | a[j1 + 1] = y1i + y5i; |
---|
1364 | a[j5] = y1r - y5r; |
---|
1365 | a[j5 + 1] = y1i - y5i; |
---|
1366 | a[j3] = y3r - y7i; |
---|
1367 | a[j3 + 1] = y3i + y7r; |
---|
1368 | a[j7] = y3r + y7i; |
---|
1369 | a[j7 + 1] = y3i - y7r; |
---|
1370 | a[j] = y0r + y4r; |
---|
1371 | a[j + 1] = y0i + y4i; |
---|
1372 | a[j4] = y0r - y4r; |
---|
1373 | a[j4 + 1] = y0i - y4i; |
---|
1374 | a[j2] = y2r - y6i; |
---|
1375 | a[j2 + 1] = y2i + y6r; |
---|
1376 | a[j6] = y2r + y6i; |
---|
1377 | a[j6 + 1] = y2i - y6r; |
---|
1378 | } |
---|
1379 | if (m < n) { |
---|
1380 | wk1r = w[4]; |
---|
1381 | wk1i = w[5]; |
---|
1382 | for (j = m; j < l + m; j += 2) { |
---|
1383 | j1 = j + l; |
---|
1384 | j2 = j1 + l; |
---|
1385 | j3 = j2 + l; |
---|
1386 | j4 = j3 + l; |
---|
1387 | j5 = j4 + l; |
---|
1388 | j6 = j5 + l; |
---|
1389 | j7 = j6 + l; |
---|
1390 | x0r = a[j] + a[j1]; |
---|
1391 | x0i = a[j + 1] + a[j1 + 1]; |
---|
1392 | x1r = a[j] - a[j1]; |
---|
1393 | x1i = a[j + 1] - a[j1 + 1]; |
---|
1394 | x2r = a[j2] + a[j3]; |
---|
1395 | x2i = a[j2 + 1] + a[j3 + 1]; |
---|
1396 | x3r = a[j2] - a[j3]; |
---|
1397 | x3i = a[j2 + 1] - a[j3 + 1]; |
---|
1398 | y0r = x0r + x2r; |
---|
1399 | y0i = x0i + x2i; |
---|
1400 | y2r = x0r - x2r; |
---|
1401 | y2i = x0i - x2i; |
---|
1402 | y1r = x1r - x3i; |
---|
1403 | y1i = x1i + x3r; |
---|
1404 | y3r = x1r + x3i; |
---|
1405 | y3i = x1i - x3r; |
---|
1406 | x0r = a[j4] + a[j5]; |
---|
1407 | x0i = a[j4 + 1] + a[j5 + 1]; |
---|
1408 | x1r = a[j4] - a[j5]; |
---|
1409 | x1i = a[j4 + 1] - a[j5 + 1]; |
---|
1410 | x2r = a[j6] + a[j7]; |
---|
1411 | x2i = a[j6 + 1] + a[j7 + 1]; |
---|
1412 | x3r = a[j6] - a[j7]; |
---|
1413 | x3i = a[j6 + 1] - a[j7 + 1]; |
---|
1414 | y4r = x0r + x2r; |
---|
1415 | y4i = x0i + x2i; |
---|
1416 | y6r = x0r - x2r; |
---|
1417 | y6i = x0i - x2i; |
---|
1418 | x0r = x1r - x3i; |
---|
1419 | x0i = x1i + x3r; |
---|
1420 | x2r = x1r + x3i; |
---|
1421 | x2i = x3r - x1i; |
---|
1422 | y5r = wk1i * x0r - wk1r * x0i; |
---|
1423 | y5i = wk1i * x0i + wk1r * x0r; |
---|
1424 | y7r = wk1r * x2r + wk1i * x2i; |
---|
1425 | y7i = wk1r * x2i - wk1i * x2r; |
---|
1426 | x0r = wk1r * y1r - wk1i * y1i; |
---|
1427 | x0i = wk1r * y1i + wk1i * y1r; |
---|
1428 | a[j1] = x0r + y5r; |
---|
1429 | a[j1 + 1] = x0i + y5i; |
---|
1430 | a[j5] = y5i - x0i; |
---|
1431 | a[j5 + 1] = x0r - y5r; |
---|
1432 | x0r = wk1i * y3r - wk1r * y3i; |
---|
1433 | x0i = wk1i * y3i + wk1r * y3r; |
---|
1434 | a[j3] = x0r - y7r; |
---|
1435 | a[j3 + 1] = x0i + y7i; |
---|
1436 | a[j7] = y7i - x0i; |
---|
1437 | a[j7 + 1] = x0r + y7r; |
---|
1438 | a[j] = y0r + y4r; |
---|
1439 | a[j + 1] = y0i + y4i; |
---|
1440 | a[j4] = y4i - y0i; |
---|
1441 | a[j4 + 1] = y0r - y4r; |
---|
1442 | x0r = y2r - y6i; |
---|
1443 | x0i = y2i + y6r; |
---|
1444 | a[j2] = wn4r * (x0r - x0i); |
---|
1445 | a[j2 + 1] = wn4r * (x0i + x0r); |
---|
1446 | x0r = y6r - y2i; |
---|
1447 | x0i = y2r + y6i; |
---|
1448 | a[j6] = wn4r * (x0r - x0i); |
---|
1449 | a[j6 + 1] = wn4r * (x0i + x0r); |
---|
1450 | } |
---|
1451 | k1 = 4; |
---|
1452 | for (k = 2 * m; k < n; k += m) { |
---|
1453 | k1 += 4; |
---|
1454 | wk1r = w[k1]; |
---|
1455 | wk1i = w[k1 + 1]; |
---|
1456 | wk2r = w[k1 + 2]; |
---|
1457 | wk2i = w[k1 + 3]; |
---|
1458 | wtmp = 2 * wk2i; |
---|
1459 | wk3r = wk1r - wtmp * wk1i; |
---|
1460 | wk3i = wtmp * wk1r - wk1i; |
---|
1461 | wk4r = 1 - wtmp * wk2i; |
---|
1462 | wk4i = wtmp * wk2r; |
---|
1463 | wtmp = 2 * wk4i; |
---|
1464 | wk5r = wk3r - wtmp * wk1i; |
---|
1465 | wk5i = wtmp * wk1r - wk3i; |
---|
1466 | wk6r = wk2r - wtmp * wk2i; |
---|
1467 | wk6i = wtmp * wk2r - wk2i; |
---|
1468 | wk7r = wk1r - wtmp * wk3i; |
---|
1469 | wk7i = wtmp * wk3r - wk1i; |
---|
1470 | for (j = k; j < l + k; j += 2) { |
---|
1471 | j1 = j + l; |
---|
1472 | j2 = j1 + l; |
---|
1473 | j3 = j2 + l; |
---|
1474 | j4 = j3 + l; |
---|
1475 | j5 = j4 + l; |
---|
1476 | j6 = j5 + l; |
---|
1477 | j7 = j6 + l; |
---|
1478 | x0r = a[j] + a[j1]; |
---|
1479 | x0i = a[j + 1] + a[j1 + 1]; |
---|
1480 | x1r = a[j] - a[j1]; |
---|
1481 | x1i = a[j + 1] - a[j1 + 1]; |
---|
1482 | x2r = a[j2] + a[j3]; |
---|
1483 | x2i = a[j2 + 1] + a[j3 + 1]; |
---|
1484 | x3r = a[j2] - a[j3]; |
---|
1485 | x3i = a[j2 + 1] - a[j3 + 1]; |
---|
1486 | y0r = x0r + x2r; |
---|
1487 | y0i = x0i + x2i; |
---|
1488 | y2r = x0r - x2r; |
---|
1489 | y2i = x0i - x2i; |
---|
1490 | y1r = x1r - x3i; |
---|
1491 | y1i = x1i + x3r; |
---|
1492 | y3r = x1r + x3i; |
---|
1493 | y3i = x1i - x3r; |
---|
1494 | x0r = a[j4] + a[j5]; |
---|
1495 | x0i = a[j4 + 1] + a[j5 + 1]; |
---|
1496 | x1r = a[j4] - a[j5]; |
---|
1497 | x1i = a[j4 + 1] - a[j5 + 1]; |
---|
1498 | x2r = a[j6] + a[j7]; |
---|
1499 | x2i = a[j6 + 1] + a[j7 + 1]; |
---|
1500 | x3r = a[j6] - a[j7]; |
---|
1501 | x3i = a[j6 + 1] - a[j7 + 1]; |
---|
1502 | y4r = x0r + x2r; |
---|
1503 | y4i = x0i + x2i; |
---|
1504 | y6r = x0r - x2r; |
---|
1505 | y6i = x0i - x2i; |
---|
1506 | x0r = x1r - x3i; |
---|
1507 | x0i = x1i + x3r; |
---|
1508 | x2r = x1r + x3i; |
---|
1509 | x2i = x1i - x3r; |
---|
1510 | y5r = wn4r * (x0r - x0i); |
---|
1511 | y5i = wn4r * (x0r + x0i); |
---|
1512 | y7r = wn4r * (x2r - x2i); |
---|
1513 | y7i = wn4r * (x2r + x2i); |
---|
1514 | x0r = y1r + y5r; |
---|
1515 | x0i = y1i + y5i; |
---|
1516 | a[j1] = wk1r * x0r - wk1i * x0i; |
---|
1517 | a[j1 + 1] = wk1r * x0i + wk1i * x0r; |
---|
1518 | x0r = y1r - y5r; |
---|
1519 | x0i = y1i - y5i; |
---|
1520 | a[j5] = wk5r * x0r - wk5i * x0i; |
---|
1521 | a[j5 + 1] = wk5r * x0i + wk5i * x0r; |
---|
1522 | x0r = y3r - y7i; |
---|
1523 | x0i = y3i + y7r; |
---|
1524 | a[j3] = wk3r * x0r - wk3i * x0i; |
---|
1525 | a[j3 + 1] = wk3r * x0i + wk3i * x0r; |
---|
1526 | x0r = y3r + y7i; |
---|
1527 | x0i = y3i - y7r; |
---|
1528 | a[j7] = wk7r * x0r - wk7i * x0i; |
---|
1529 | a[j7 + 1] = wk7r * x0i + wk7i * x0r; |
---|
1530 | a[j] = y0r + y4r; |
---|
1531 | a[j + 1] = y0i + y4i; |
---|
1532 | x0r = y0r - y4r; |
---|
1533 | x0i = y0i - y4i; |
---|
1534 | a[j4] = wk4r * x0r - wk4i * x0i; |
---|
1535 | a[j4 + 1] = wk4r * x0i + wk4i * x0r; |
---|
1536 | x0r = y2r - y6i; |
---|
1537 | x0i = y2i + y6r; |
---|
1538 | a[j2] = wk2r * x0r - wk2i * x0i; |
---|
1539 | a[j2 + 1] = wk2r * x0i + wk2i * x0r; |
---|
1540 | x0r = y2r + y6i; |
---|
1541 | x0i = y2i - y6r; |
---|
1542 | a[j6] = wk6r * x0r - wk6i * x0i; |
---|
1543 | a[j6 + 1] = wk6r * x0i + wk6i * x0r; |
---|
1544 | } |
---|
1545 | } |
---|
1546 | } |
---|
1547 | } |
---|
1548 | |
---|
1549 | |
---|
1550 | void rftfsub(int n, double *a, int nc, double *c) |
---|
1551 | { |
---|
1552 | int j, k, kk, ks, m; |
---|
1553 | double wkr, wki, xr, xi, yr, yi; |
---|
1554 | |
---|
1555 | m = n >> 1; |
---|
1556 | ks = 2 * nc / m; |
---|
1557 | kk = 0; |
---|
1558 | for (j = 2; j < m; j += 2) { |
---|
1559 | k = n - j; |
---|
1560 | kk += ks; |
---|
1561 | wkr = 0.5 - c[nc - kk]; |
---|
1562 | wki = c[kk]; |
---|
1563 | xr = a[j] - a[k]; |
---|
1564 | xi = a[j + 1] + a[k + 1]; |
---|
1565 | yr = wkr * xr - wki * xi; |
---|
1566 | yi = wkr * xi + wki * xr; |
---|
1567 | a[j] -= yr; |
---|
1568 | a[j + 1] -= yi; |
---|
1569 | a[k] += yr; |
---|
1570 | a[k + 1] -= yi; |
---|
1571 | } |
---|
1572 | } |
---|
1573 | |
---|
1574 | |
---|
1575 | void rftbsub(int n, double *a, int nc, double *c) |
---|
1576 | { |
---|
1577 | int j, k, kk, ks, m; |
---|
1578 | double wkr, wki, xr, xi, yr, yi; |
---|
1579 | |
---|
1580 | a[1] = -a[1]; |
---|
1581 | m = n >> 1; |
---|
1582 | ks = 2 * nc / m; |
---|
1583 | kk = 0; |
---|
1584 | for (j = 2; j < m; j += 2) { |
---|
1585 | k = n - j; |
---|
1586 | kk += ks; |
---|
1587 | wkr = 0.5 - c[nc - kk]; |
---|
1588 | wki = c[kk]; |
---|
1589 | xr = a[j] - a[k]; |
---|
1590 | xi = a[j + 1] + a[k + 1]; |
---|
1591 | yr = wkr * xr + wki * xi; |
---|
1592 | yi = wkr * xi - wki * xr; |
---|
1593 | a[j] -= yr; |
---|
1594 | a[j + 1] = yi - a[j + 1]; |
---|
1595 | a[k] += yr; |
---|
1596 | a[k + 1] = yi - a[k + 1]; |
---|
1597 | } |
---|
1598 | a[m + 1] = -a[m + 1]; |
---|
1599 | } |
---|
1600 | |
---|
1601 | |
---|
1602 | void dctsub(int n, double *a, int nc, double *c) |
---|
1603 | { |
---|
1604 | int j, k, kk, ks, m; |
---|
1605 | double wkr, wki, xr; |
---|
1606 | |
---|
1607 | m = n >> 1; |
---|
1608 | ks = nc / n; |
---|
1609 | kk = 0; |
---|
1610 | for (j = 1; j < m; j++) { |
---|
1611 | k = n - j; |
---|
1612 | kk += ks; |
---|
1613 | wkr = c[kk] - c[nc - kk]; |
---|
1614 | wki = c[kk] + c[nc - kk]; |
---|
1615 | xr = wki * a[j] - wkr * a[k]; |
---|
1616 | a[j] = wkr * a[j] + wki * a[k]; |
---|
1617 | a[k] = xr; |
---|
1618 | } |
---|
1619 | a[m] *= c[0]; |
---|
1620 | } |
---|
1621 | |
---|
1622 | |
---|
1623 | void dstsub(int n, double *a, int nc, double *c) |
---|
1624 | { |
---|
1625 | int j, k, kk, ks, m; |
---|
1626 | double wkr, wki, xr; |
---|
1627 | |
---|
1628 | m = n >> 1; |
---|
1629 | ks = nc / n; |
---|
1630 | kk = 0; |
---|
1631 | for (j = 1; j < m; j++) { |
---|
1632 | k = n - j; |
---|
1633 | kk += ks; |
---|
1634 | wkr = c[kk] - c[nc - kk]; |
---|
1635 | wki = c[kk] + c[nc - kk]; |
---|
1636 | xr = wki * a[k] - wkr * a[j]; |
---|
1637 | a[k] = wkr * a[k] + wki * a[j]; |
---|
1638 | a[j] = xr; |
---|
1639 | } |
---|
1640 | a[m] *= c[0]; |
---|
1641 | } |
---|
1642 | |
---|