source: src/tempo/beattracking.c @ ffa8607

feature/autosinkfeature/cnnfeature/cnn_orgfeature/constantqfeature/crepefeature/crepe_orgfeature/pitchshiftfeature/pydocstringsfeature/timestretchfix/ffmpeg5pitchshiftsamplertimestretchyinfft+
Last change on this file since ffa8607 was ffa8607, checked in by Paul Brossier <piem@piem.org>, 10 years ago

src/tempo/beattracking.c: fix rayleigh period clamping

  • Property mode set to 100644
File size: 12.1 KB
Line 
1/*
2  Copyright (C) 2005-2009 Matthew Davies and Paul Brossier <piem@aubio.org>
3
4  This file is part of aubio.
5
6  aubio is free software: you can redistribute it and/or modify
7  it under the terms of the GNU General Public License as published by
8  the Free Software Foundation, either version 3 of the License, or
9  (at your option) any later version.
10
11  aubio is distributed in the hope that it will be useful,
12  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  GNU General Public License for more details.
15
16  You should have received a copy of the GNU General Public License
17  along with aubio.  If not, see <http://www.gnu.org/licenses/>.
18
19*/
20
21#include "aubio_priv.h"
22#include "fvec.h"
23#include "mathutils.h"
24#include "tempo/beattracking.h"
25
26/** define to 1 to print out tracking difficulties */
27#define AUBIO_BEAT_WARNINGS 0
28
29uint_t fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp);
30void aubio_beattracking_checkstate (aubio_beattracking_t * bt);
31
32struct _aubio_beattracking_t
33{
34  fvec_t *rwv;           /** rayleigh weighting for beat period in general model */
35  fvec_t *dfwv;          /** exponential weighting for beat alignment in general model */
36  fvec_t *gwv;           /** gaussian weighting for beat period in context dependant model */
37  fvec_t *phwv;          /** gaussian weighting for beat alignment in context dependant model */
38  fvec_t *dfrev;         /** reversed onset detection function */
39  fvec_t *acf;           /** vector for autocorrelation function (of current detection function frame) */
40  fvec_t *acfout;        /** store result of passing acf through s.i.c.f.b. */
41  fvec_t *phout;
42  uint_t timesig;        /** time signature of input, set to zero until context dependent model activated */
43  uint_t step;
44  uint_t rayparam;       /** Rayleigh parameter */
45  smpl_t lastbeat;
46  sint_t counter;
47  uint_t flagstep;
48  smpl_t g_var;
49  smpl_t gp;
50  smpl_t bp;
51  smpl_t rp;
52  smpl_t rp1;
53  smpl_t rp2;
54};
55
56aubio_beattracking_t *
57new_aubio_beattracking (uint_t winlen)
58{
59
60  aubio_beattracking_t *p = AUBIO_NEW (aubio_beattracking_t);
61  uint_t i = 0;
62  /* parameter for rayleigh weight vector - sets preferred tempo to
63   * 120bpm [43] */
64  smpl_t rayparam = 48. / 512. * winlen;
65  smpl_t dfwvnorm = EXP ((LOG (2.0) / rayparam) * (winlen + 2));
66  /* length over which beat period is found [128] */
67  uint_t laglen = winlen / 4;
68  /* step increment - both in detection function samples -i.e. 11.6ms or
69   * 1 onset frame [128] */
70  uint_t step = winlen / 4;     /* 1.5 seconds */
71
72  p->lastbeat = 0;
73  p->counter = 0;
74  p->flagstep = 0;
75  p->g_var = 3.901;             // constthresh empirically derived!
76  p->rp = 1;
77  p->gp = 0;
78
79  p->rayparam = rayparam;
80  p->step = step;
81  p->rwv = new_fvec (laglen);
82  p->gwv = new_fvec (laglen);
83  p->dfwv = new_fvec (winlen);
84  p->dfrev = new_fvec (winlen);
85  p->acf = new_fvec (winlen);
86  p->acfout = new_fvec (laglen);
87  p->phwv = new_fvec (2 * laglen);
88  p->phout = new_fvec (winlen);
89
90  p->timesig = 0;
91
92  /* exponential weighting, dfwv = 0.5 when i =  43 */
93  for (i = 0; i < winlen; i++) {
94    p->dfwv->data[i] = (EXP ((LOG (2.0) / rayparam) * (i + 1)))
95        / dfwvnorm;
96  }
97
98  for (i = 0; i < (laglen); i++) {
99    p->rwv->data[i] = ((smpl_t) (i + 1.) / SQR ((smpl_t) rayparam)) *
100        EXP ((-SQR ((smpl_t) (i + 1.)) / (2. * SQR ((smpl_t) rayparam))));
101  }
102
103  return p;
104
105}
106
107void
108del_aubio_beattracking (aubio_beattracking_t * p)
109{
110  del_fvec (p->rwv);
111  del_fvec (p->gwv);
112  del_fvec (p->dfwv);
113  del_fvec (p->dfrev);
114  del_fvec (p->acf);
115  del_fvec (p->acfout);
116  del_fvec (p->phwv);
117  del_fvec (p->phout);
118  AUBIO_FREE (p);
119}
120
121
122void
123aubio_beattracking_do (aubio_beattracking_t * bt, fvec_t * dfframe,
124    fvec_t * output)
125{
126
127  uint_t i, k;
128  uint_t step = bt->step;
129  uint_t laglen = bt->rwv->length;
130  uint_t winlen = bt->dfwv->length;
131  uint_t maxindex = 0;
132  //number of harmonics in shift invariant comb filterbank
133  uint_t numelem = 4;
134
135  smpl_t phase;                 // beat alignment (step - lastbeat)
136  smpl_t beat;                  // beat position
137  smpl_t bp;                    // beat period
138  uint_t a, b;                  // used to build shift invariant comb filterbank
139  uint_t kmax;                  // number of elements used to find beat phase
140
141  /* copy dfframe, apply detection function weighting, and revert */
142  fvec_copy (dfframe, bt->dfrev);
143  fvec_weight (bt->dfrev, bt->dfwv);
144  fvec_rev (bt->dfrev);
145
146  /* compute autocorrelation function */
147  aubio_autocorr (dfframe, bt->acf);
148
149  /* if timesig is unknown, use metrically unbiased version of filterbank */
150  if (!bt->timesig) {
151    numelem = 4;
152  } else {
153    numelem = bt->timesig;
154  }
155
156  /* first and last output values are left intentionally as zero */
157  fvec_zeros (bt->acfout);
158
159  /* compute shift invariant comb filterbank */
160  for (i = 1; i < laglen - 1; i++) {
161    for (a = 1; a <= numelem; a++) {
162      for (b = 1; b < 2 * a; b++) {
163        bt->acfout->data[i] += bt->acf->data[i * a + b - 1]
164            * 1. / (2. * a - 1.);
165      }
166    }
167  }
168  /* apply Rayleigh weight */
169  fvec_weight (bt->acfout, bt->rwv);
170
171  /* find non-zero Rayleigh period */
172  maxindex = fvec_max_elem (bt->acfout);
173  if (maxindex > 0 && maxindex < bt->acfout->length - 1) {
174    bt->rp = fvec_quadratic_peak_pos (bt->acfout, maxindex);
175  } else {
176    bt->rp = bt->rayparam;
177  }
178
179  /* activate biased filterbank */
180  aubio_beattracking_checkstate (bt);
181#if 0                           // debug metronome mode
182  bt->bp = 36.9142;
183#endif
184  bp = bt->bp;
185  /* end of biased filterbank */
186
187  if (bp == 0) {
188    output->data[0] = 0;
189    return;
190  }
191
192  /* deliberate integer operation, could be set to 3 max eventually */
193  kmax = FLOOR (winlen / bp);
194
195  /* initialize output */
196  fvec_zeros (bt->phout);
197  for (i = 0; i < bp; i++) {
198    for (k = 0; k < kmax; k++) {
199      bt->phout->data[i] += bt->dfrev->data[i + (uint_t) ROUND (bp * k)];
200    }
201  }
202  fvec_weight (bt->phout, bt->phwv);
203
204  /* find Rayleigh period */
205  maxindex = fvec_max_elem (bt->phout);
206  if (maxindex >= winlen - 1) {
207#if AUBIO_BEAT_WARNINGS
208    AUBIO_WRN ("no idea what this groove's phase is\n");
209#endif /* AUBIO_BEAT_WARNINGS */
210    phase = step - bt->lastbeat;
211  } else {
212    phase = fvec_quadratic_peak_pos (bt->phout, maxindex);
213  }
214  /* take back one frame delay */
215  phase += 1.;
216#if 0                           // debug metronome mode
217  phase = step - bt->lastbeat;
218#endif
219
220  /* reset output */
221  fvec_zeros (output);
222
223  i = 1;
224  beat = bp - phase;
225
226  // AUBIO_DBG ("bp: %f, phase: %f, lastbeat: %f, step: %d, winlen: %d\n",
227  //    bp, phase, bt->lastbeat, step, winlen);
228
229  /* the next beat will be earlier than 60% of the tempo period
230    skip this one */
231  if ( ( step - bt->lastbeat - phase ) < -0.40 * bp ) {
232#if AUBIO_BEAT_WARNINGS
233    AUBIO_WRN ("back off-beat error, skipping this beat\n");
234#endif /* AUBIO_BEAT_WARNINGS */
235    beat += bp;
236  }
237
238  /* start counting the beats */
239  while (beat + bp < 0) {
240    beat += bp;
241  }
242
243  if (beat >= 0) {
244    //AUBIO_DBG ("beat: %d, %f, %f\n", i, bp, beat);
245    output->data[i] = beat;
246    i++;
247  }
248
249  while (beat + bp <= step) {
250    beat += bp;
251    //AUBIO_DBG ("beat: %d, %f, %f\n", i, bp, beat);
252    output->data[i] = beat;
253    i++;
254  }
255
256  bt->lastbeat = beat;
257  /* store the number of beats in this frame as the first element */
258  output->data[0] = i;
259}
260
261uint_t
262fvec_gettimesig (fvec_t * acf, uint_t acflen, uint_t gp)
263{
264  sint_t k = 0;
265  smpl_t three_energy = 0., four_energy = 0.;
266  if (acflen > 6 * gp + 2) {
267    for (k = -2; k < 2; k++) {
268      three_energy += acf->data[3 * gp + k];
269      four_energy += acf->data[4 * gp + k];
270    }
271  } else {
272    /*Expanded to be more accurate in time sig estimation */
273    for (k = -2; k < 2; k++) {
274      three_energy += acf->data[3 * gp + k] + acf->data[6 * gp + k];
275      four_energy += acf->data[4 * gp + k] + acf->data[2 * gp + k];
276    }
277  }
278  return (three_energy > four_energy) ? 3 : 4;
279}
280
281void
282aubio_beattracking_checkstate (aubio_beattracking_t * bt)
283{
284  uint_t i, j, a, b;
285  uint_t flagconst = 0;
286  sint_t counter = bt->counter;
287  uint_t flagstep = bt->flagstep;
288  smpl_t gp = bt->gp;
289  smpl_t bp = bt->bp;
290  smpl_t rp = bt->rp;
291  smpl_t rp1 = bt->rp1;
292  smpl_t rp2 = bt->rp2;
293  uint_t laglen = bt->rwv->length;
294  uint_t acflen = bt->acf->length;
295  uint_t step = bt->step;
296  fvec_t *acf = bt->acf;
297  fvec_t *acfout = bt->acfout;
298
299  if (gp) {
300    // doshiftfbank again only if context dependent model is in operation
301    //acfout = doshiftfbank(acf,gwv,timesig,laglen,acfout);
302    //don't need acfout now, so can reuse vector
303    // gwv is, in first loop, definitely all zeros, but will have
304    // proper values when context dependent model is activated
305    fvec_zeros (acfout);
306    for (i = 1; i < laglen - 1; i++) {
307      for (a = 1; a <= bt->timesig; a++) {
308        for (b = 1; b < 2 * a; b++) {
309          acfout->data[i] += acf->data[i * a + b - 1];
310        }
311      }
312    }
313    fvec_weight (acfout, bt->gwv);
314    gp = fvec_quadratic_peak_pos (acfout, fvec_max_elem (acfout));
315    /*
316       while(gp<32) gp =gp*2;
317       while(gp>64) gp = gp/2;
318     */
319  } else {
320    //still only using general model
321    gp = 0;
322  }
323
324  //now look for step change - i.e. a difference between gp and rp that
325  // is greater than 2*constthresh - always true in first case, since gp = 0
326  if (counter == 0) {
327    if (ABS (gp - rp) > 2. * bt->g_var) {
328      flagstep = 1;             // have observed  step change.
329      counter = 3;              // setup 3 frame counter
330    } else {
331      flagstep = 0;
332    }
333  }
334  //i.e. 3rd frame after flagstep initially set
335  if (counter == 1 && flagstep == 1) {
336    //check for consistency between previous beatperiod values
337    if (ABS (2. * rp - rp1 - rp2) < bt->g_var) {
338      //if true, can activate context dependent model
339      flagconst = 1;
340      counter = 0;              // reset counter and flagstep
341    } else {
342      //if not consistent, then don't flag consistency!
343      flagconst = 0;
344      counter = 2;              // let it look next time
345    }
346  } else if (counter > 0) {
347    //if counter doesn't = 1,
348    counter = counter - 1;
349  }
350
351  rp2 = rp1;
352  rp1 = rp;
353
354  if (flagconst) {
355    /* first run of new hypothesis */
356    gp = rp;
357    bt->timesig = fvec_gettimesig (acf, acflen, gp);
358    for (j = 0; j < laglen; j++)
359      bt->gwv->data[j] =
360          EXP (-.5 * SQR ((smpl_t) (j + 1. - gp)) / SQR (bt->g_var));
361    flagconst = 0;
362    bp = gp;
363    /* flat phase weighting */
364    fvec_ones (bt->phwv);
365  } else if (bt->timesig) {
366    /* context dependant model */
367    bp = gp;
368    /* gaussian phase weighting */
369    if (step > bt->lastbeat) {
370      for (j = 0; j < 2 * laglen; j++) {
371        bt->phwv->data[j] =
372            EXP (-.5 * SQR ((smpl_t) (1. + j - step +
373                    bt->lastbeat)) / (bp / 8.));
374      }
375    } else {
376      //AUBIO_DBG("NOT using phase weighting as step is %d and lastbeat %d \n",
377      //                step,bt->lastbeat);
378      fvec_ones (bt->phwv);
379    }
380  } else {
381    /* initial state */
382    bp = rp;
383    /* flat phase weighting */
384    fvec_ones (bt->phwv);
385  }
386
387  /* do some further checks on the final bp value */
388
389  /* if tempo is > 206 bpm, half it */
390  while (0 < bp && bp < 25) {
391#if AUBIO_BEAT_WARNINGS
392    AUBIO_WRN ("doubling from %f (%f bpm) to %f (%f bpm)\n",
393        bp, 60.*44100./512./bp, bp/2., 60.*44100./512./bp/2. );
394    //AUBIO_DBG("warning, halving the tempo from %f\n", 60.*samplerate/hopsize/bp);
395#endif /* AUBIO_BEAT_WARNINGS */
396    bp = bp * 2;
397  }
398
399  //AUBIO_DBG("tempo:\t%3.5f bpm | ", 5168./bp);
400
401  /* smoothing */
402  //bp = (uint_t) (0.8 * (smpl_t)bp + 0.2 * (smpl_t)bp2);
403  //AUBIO_DBG("tempo:\t%3.5f bpm smoothed | bp2 %d | bp %d | ", 5168./bp, bp2, bp);
404  //bp2 = bp;
405  //AUBIO_DBG("time signature: %d \n", bt->timesig);
406  bt->counter = counter;
407  bt->flagstep = flagstep;
408  bt->gp = gp;
409  bt->bp = bp;
410  bt->rp1 = rp1;
411  bt->rp2 = rp2;
412}
413
414smpl_t
415aubio_beattracking_get_bpm (aubio_beattracking_t * bt)
416{
417  if (bt->bp != 0 && bt->timesig != 0 && bt->counter == 0 && bt->flagstep == 0) {
418    return 5168. / fvec_quadratic_peak_pos (bt->acfout, bt->bp);
419  } else {
420    return 0.;
421  }
422}
423
424smpl_t
425aubio_beattracking_get_confidence (aubio_beattracking_t * bt)
426{
427  if (bt->gp) {
428    return fvec_max (bt->acfout);
429  } else {
430    return 0.;
431  }
432}
Note: See TracBrowser for help on using the repository browser.