Changes in / [f98063b:5bdbb83]


Ignore:
File:
1 edited

Legend:

Unmodified
Added
Removed
  • src/pitch/pitchyinfft.c

    rf98063b r5bdbb83  
    3838  smpl_t tol;         /**< Yin tolerance */
    3939  smpl_t confidence;  /**< confidence */
    40   uint_t short_period; /** shortest period under which to check for octave error */
     40  uint_t samplerate;  /**< samplerate we got initialized with */
    4141};
    4242
     
    7070  p->win = new_aubio_window ("hanningz", bufsize);
    7171  p->weight = new_fvec (bufsize / 2 + 1);
     72  p->samplerate = samplerate;
    7273  for (i = 0; i < p->weight->length; i++) {
    7374    freq = (smpl_t) i / (smpl_t) bufsize *(smpl_t) samplerate;
     
    9495    //p->weight->data[i] = SQRT(DB2LIN(p->weight->data[i]));
    9596  }
    96   // check for octave errors above 1300 Hz
    97   p->short_period = (uint_t)ROUND(samplerate / 1300.);
     97
     98  // disable weighting
     99  fvec_set_all (p->weight, 1.0);
     100
    98101  return p;
    99102
     
    109112  uint_t tau, l;
    110113  uint_t length = p->fftout->length;
    111   uint_t halfperiod;
    112114  fvec_t *fftout = p->fftout;
    113115  fvec_t *yin = p->yinfft;
    114116  smpl_t tmp = 0., sum = 0.;
     117  // empirically derived peak width to look for
     118  uint_t lookafter = yin->length / 128, endbin;
     119
    115120  // window the input
    116121  fvec_weighted_copy(input, p->win, p->winput);
     
    146151    }
    147152  }
    148   // find best candidates
    149   tau = fvec_min_elem (yin);
    150   if (yin->data[tau] < p->tol) {
    151     // no interpolation, directly return the period as an integer
    152     //output->data[0] = tau;
    153     //return;
    154 
    155     // 3 point quadratic interpolation
    156     //return fvec_quadratic_peak_pos (yin,tau,1);
    157     /* additional check for (unlikely) octave doubling in higher frequencies */
    158     if (tau > p->short_period) {
    159       output->data[0] = fvec_quadratic_peak_pos (yin, tau);
    160     } else {
    161       /* should compare the minimum value of each interpolated peaks */
    162       halfperiod = FLOOR (tau / 2 + .5);
    163       if (yin->data[halfperiod] < p->tol)
    164         output->data[0] = fvec_quadratic_peak_pos (yin, halfperiod);
    165       else
    166         output->data[0] = fvec_quadratic_peak_pos (yin, tau);
    167     }
    168   } else {
     153
     154  // calc min available confidence first
     155  tmp = fvec_min(yin);
     156  if (tmp > p->tol) {
     157    // give up - got no confident candidate at all
    169158    output->data[0] = 0.;
    170   }
     159    return;
     160  }
     161
     162  // choose first confident candidate, to avoid choosing lower harmonics
     163  tau = 0;
     164  for (l = 1; l < yin->length; l++) {
     165    // is this candidate "roughly" as good as the lowest one?
     166    // the constant 0.1 is empirically derived
     167    if (ABS (yin->data[l] - tmp) < 0.1) {
     168      tau = l;
     169      break;
     170    }
     171  }
     172  // find local min around current peak to sharpen the results
     173  endbin = tau + lookafter < yin->length - 1 ? tau + lookafter : yin->length - 1;
     174  tmp = yin->data[tau];
     175  for (l = tau; l < endbin; l++) {
     176    if (yin->data[l] < tmp ) {
     177      tmp = yin->data[l];
     178      tau = l;
     179    }
     180    // stop as soon as we start going up again
     181    if (yin->data[l] > tmp && l > tau) {
     182      break;
     183    }
     184  }
     185  output->data[0] = fvec_quadratic_peak_pos(yin, tau);
    171186}
    172187
Note: See TracChangeset for help on using the changeset viewer.