- Timestamp:
- Mar 8, 2013, 11:01:55 PM (12 years ago)
- Branches:
- feature/autosink, feature/cnn, feature/cnn_org, feature/constantq, feature/crepe, feature/crepe_org, feature/pitchshift, feature/pydocstrings, feature/timestretch, fix/ffmpeg5, master, pitchshift, sampler, timestretch, yinfft+
- Children:
- daa0d5d
- Parents:
- 2cedc83
- Location:
- python/demos
- Files:
-
- 2 added
- 3 edited
Legend:
- Unmodified
- Added
- Removed
-
python/demos/demo_onset.py
r2cedc83 r5d5d6b9 18 18 s = source(filename, samplerate, hop_s) 19 19 samplerate = s.samplerate 20 20 21 o = onset("default", win_s, hop_s, samplerate) 21 22 -
python/demos/demo_simple_robot_voice.py
r2cedc83 r5d5d6b9 20 20 samples, read = f() 21 21 spectrum = pv(samples) # compute spectrum 22 #spectrum.norm *= .8 # reduce amplitude a bit 22 23 spectrum.phas[:] = 0. # zero phase 23 24 new_samples = pv.rdo(spectrum) # compute modified samples -
python/demos/demo_specdesc.py
r2cedc83 r5d5d6b9 1 1 #! /usr/bin/env python 2 2 3 from numpy import random, sin, arange, ones, zeros4 from math import pi5 from aubio import fvec, onset3 import sys 4 from aubio import fvec, source, pvoc, specdesc 5 from numpy import hstack 6 6 7 def build_sinusoid(length, freqs, samplerate): 8 return sin( 2. * pi * arange(length) * freqs / samplerate) 7 win_s = 512 # fft size 8 hop_s = win_s / 4 # hop size 9 9 10 def run_onset(p, input_vec): 11 f = fvec (p.hop_size) 12 cands = [] 13 count = 0 14 for vec_slice in input_vec.reshape((-1, p.hop_size)): 15 f[:] = vec_slice 16 cands.append(o(f)) 17 return cands 10 if len(sys.argv) < 2: 11 print "Usage: %s <filename> [samplerate]" % sys.argv[0] 12 sys.exit(1) 18 13 19 methods = ['default', 20 'energy', 21 'complex', 22 'phase', 23 'specdiff', 24 'kl', 25 'mkl', 26 'specflux', 27 'centroid', 28 'spread', 29 'skewness', 30 'kurtosis', 31 'slope', 32 'decrease', 33 'rolloff', 34 ] 14 filename = sys.argv[1] 35 15 36 cands = {} 37 buf_size = 2048 38 hop_size = 512 39 samplerate = 44100 40 sin_length = (samplerate * 10) % 512 * 512 41 freqs = zeros(sin_length) 16 samplerate = 0 17 if len( sys.argv ) > 2: samplerate = int(sys.argv[2]) 42 18 43 partition = sin_length / 8 44 pointer = 0 19 s = source(filename, samplerate, hop_s) 20 samplerate = s.samplerate 45 21 46 pointer += partition 47 freqs[pointer: pointer + partition] = 440 22 pv = pvoc(win_s, hop_s) 48 23 49 pointer += partition 50 pointer += partition 51 freqs[ pointer : pointer + partition ] = 740 24 methods = ['default', 'energy', 'hfc', 'complex', 'phase', 'specdiff', 'kl', 'mkl', 25 'specflux', 'centroid', 'spread', 'skewness', 'kurtosis', 'slope', 'decrease', 26 'rolloff', ] 52 27 53 pointer += partition 54 freqs[ pointer : pointer + partition ] = 1480 55 56 pointer += partition 57 pointer += partition 58 freqs[ pointer : pointer + partition ] = 400 + 5 * random.random(sin_length/8) 59 60 a = build_sinusoid(sin_length, freqs, samplerate) 28 all_descs = {} 29 o = {} 61 30 62 31 for method in methods: 63 o = onset(method, buf_size, hop_size, samplerate) 64 cands[method] = run_onset(o, a) 32 cands = [] 33 all_descs[method] = fvec(0) 34 o[method] = specdesc(method, win_s) 65 35 66 print "done computing" 36 total_frames = 0 37 downsample = 2 38 39 while True: 40 samples, read = s() 41 fftgrain = pv(samples) 42 print "%f" % ( total_frames / float(samplerate) ), 43 for method in methods: 44 specdesc_val = o[method](fftgrain)[0] 45 all_descs[method] = hstack ( [all_descs[method], specdesc_val] ) 46 print "%f" % specdesc_val, 47 print 48 total_frames += read 49 if read < hop_s: break 67 50 68 51 if 1: 69 from pylab import plot, show, xlabel, ylabel, legend, ylim, subplot 70 subplot (211) 71 legend(methods+['ground truth'], 'upper right') 72 xlabel('time (s)') 73 ylabel('amplitude') 74 ramp = arange(0, sin_length).astype('float') / samplerate 75 plot(ramp, a, ':') 76 subplot (212) 77 ramp = arange(0, sin_length / hop_size).astype('float') * hop_size / samplerate 78 for method in methods: 79 plot(ramp, cands[method],'.-') 80 legend(methods, 'upper right') 81 xlabel('time (s)') 82 ylabel('spectral descriptor value') 83 show() 52 print "done computing, now plotting" 53 import matplotlib.pyplot as plt 54 from demo_waveform_plot import get_waveform_plot 55 fig = plt.figure() 56 plt.rc('lines',linewidth='.8') 57 wave = plt.axes([0.1, 0.75, 0.8, 0.19]) 58 get_waveform_plot(filename, samplerate, ax = wave ) 59 wave.yaxis.set_visible(False) 60 wave.xaxis.set_visible(False) 84 61 62 all_desc_times = [ x * hop_s for x in range(len(all_descs["default"])) ] 63 n_methods = len(methods) 64 for i, method in enumerate(methods): 65 #ax = fig.add_subplot (n_methods, 1, i) 66 #plt2 = plt.axes([0.1, 0.1, 0.8, 0.65], sharex = plt1) 67 ax = plt.axes ( [0.1, 0.75 - ((i+1) * 0.65 / n_methods), 0.8, 0.65 / n_methods], sharex = wave ) 68 ax.plot(all_desc_times, all_descs[method], '-', label = method) 69 #ax.set_ylabel(method, rotation = 0) 70 ax.xaxis.set_visible(False) 71 ax.yaxis.set_visible(False) 72 ax.axis(xmax = all_desc_times[-1], xmin = all_desc_times[0]) 73 ax.annotate(method, xy=(-10, 10), xycoords='axes points', 74 horizontalalignment='right', verticalalignment='bottom', 75 ) 76 if all_desc_times[-1] / float(samplerate) > 60: 77 plt.xlabel('time (mm:ss)') 78 ax.set_xticklabels([ "%02d:%02d" % (t/float(samplerate)/60, (t/float(samplerate))%60) for t in ax.get_xticks()[:-1]], rotation = 50) 79 else: 80 plt.xlabel('time (ss.mm)') 81 ax.set_xticklabels([ "%02d.%02d" % (t/float(samplerate), 100*((t/float(samplerate))%1) ) for t in ax.get_xticks()[:-1]], rotation = 50) 82 #plt.ylabel('spectral descriptor value') 83 ax.xaxis.set_visible(True) 84 plt.show()
Note: See TracChangeset
for help on using the changeset viewer.