- Timestamp:
- Dec 29, 2021, 5:51:45 PM (3 years ago)
- Branches:
- feature/cnn, feature/crepe
- Children:
- 97985d4
- Parents:
- b508ba6
- git-author:
- Paul Brossier <piem@piem.org> (01/01/19 18:39:26)
- git-committer:
- Paul Brossier <piem@piem.org> (12/29/21 17:51:45)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/ai/conv1d.c
rb508ba6 rf4c5a95 117 117 case PAD_SAME: 118 118 // compute output shape 119 output_shape[0] = (uint_t)CEIL(input_tensor-> dims[0]119 output_shape[0] = (uint_t)CEIL(input_tensor->shape[0] 120 120 / (smpl_t)c->stride_shape); 121 121 122 122 uint_t padding_shape; // total amount of padding 123 123 padding_shape = (output_shape[0] - 1) * c->stride_shape + 124 c->kernel_shape - input_tensor-> dims[0];124 c->kernel_shape - input_tensor->shape[0]; 125 125 126 126 padding_start = FLOOR(padding_shape / 2); 127 127 break; 128 128 case PAD_VALID: 129 output_shape[0] = (input_tensor-> dims[0] - c->kernel_shape + 1)129 output_shape[0] = (input_tensor->shape[0] - c->kernel_shape + 1) 130 130 / c->stride_shape; 131 131 … … 139 139 } 140 140 141 uint_t kernel_ dims[3];142 kernel_ dims[0] = c->kernel_shape; // filter length143 kernel_ dims[1] = input_tensor->dims[1]; // channels144 kernel_ dims[2] = c->n_filters; // outputs141 uint_t kernel_shape[3]; 142 kernel_shape[0] = c->kernel_shape; // filter length 143 kernel_shape[1] = input_tensor->shape[1]; // channels 144 kernel_shape[2] = c->n_filters; // outputs 145 145 146 146 if (c->kernel) del_aubio_tensor(c->kernel); 147 147 if (c->bias) del_fvec(c->bias); 148 148 149 c->kernel = new_aubio_tensor(3, kernel_ dims);149 c->kernel = new_aubio_tensor(3, kernel_shape); 150 150 if (!c->kernel) return AUBIO_FAIL; 151 151 c->bias = new_fvec(c->n_filters); … … 170 170 // print some info 171 171 AUBIO_ASSERT(c); 172 uint_t n_params = (c->kernel-> dims[0] * c->kernel->dims[2] + 1)173 * c->kernel-> dims[1] * c->kernel->dims[3];172 uint_t n_params = (c->kernel->shape[0] * c->kernel->shape[2] + 1) 173 * c->kernel->shape[1] * c->kernel->shape[3]; 174 174 AUBIO_DBG("conv1d: input (%d, %d) ¤ conv1d (%d, %d, %d)" 175 175 " : (%d, %d)" 176 176 " (%d params, stride (%d), pad_start [%d])\n", 177 input_tensor-> dims[0], input_tensor->dims[1],178 c->kernel-> dims[0], c->kernel->dims[1], c->kernel->dims[2],177 input_tensor->shape[0], input_tensor->shape[1], 178 c->kernel->shape[0], c->kernel->shape[1], c->kernel->shape[2], 179 179 c->output_shape[0], c->output_shape[1], 180 180 n_params, … … 196 196 197 197 // check we have as many filters as expected activation outputs 198 if (activations-> dims[1] != c->n_filters) return AUBIO_FAIL;199 if (activations-> dims[1] != c->kernel->dims[2]) return AUBIO_FAIL;200 if (input_tensor-> dims[1] != c->kernel->dims[1]) return AUBIO_FAIL;198 if (activations->shape[1] != c->n_filters) return AUBIO_FAIL; 199 if (activations->shape[1] != c->kernel->shape[2]) return AUBIO_FAIL; 200 if (input_tensor->shape[1] != c->kernel->shape[1]) return AUBIO_FAIL; 201 201 202 202 // check tensor activations has the expected sizes 203 if (c->output_shape[0] != activations-> dims[0]) return AUBIO_FAIL;204 if (c->output_shape[1] != activations-> dims[1]) return AUBIO_FAIL;203 if (c->output_shape[0] != activations->shape[0]) return AUBIO_FAIL; 204 if (c->output_shape[1] != activations->shape[1]) return AUBIO_FAIL; 205 205 return AUBIO_OK; 206 206 } … … 223 223 224 224 // for each kernel filter k 225 for (i = 0; i < activations-> dims[1]; i++) {225 for (i = 0; i < activations->shape[1]; i++) { 226 226 // get bias 227 227 bias = c->bias->data[i]; 228 228 stride_a = 0; // k * c->stride_shape 229 229 // for each output 230 for (j = 0; j < activations-> dims[0]; j++) {230 for (j = 0; j < activations->shape[0]; j++) { 231 231 // reset output 232 232 acc = 0; … … 234 234 for (a = 0; a < c->kernel_shape; a++) { 235 235 x = stride_a + a - c->padding_start; 236 if ((x > -1) && (x < (sint_t)input_tensor-> dims[0])) {236 if ((x > -1) && (x < (sint_t)input_tensor->shape[0])) { 237 237 kk = 0; 238 238 // for each input channel 239 for (k = 0; k < input_tensor-> dims[1]; k++) {239 for (k = 0; k < input_tensor->shape[1]; k++) { 240 240 // get kernel weight 241 241 w = c->kernel->data[a][kk + i]; … … 243 243 s = input_tensor->data[x][k]; 244 244 acc += w * s; 245 kk += c->kernel-> dims[2];245 kk += c->kernel->shape[2]; 246 246 } 247 247 }
Note: See TracChangeset
for help on using the changeset viewer.