1 | from aubioclass import * |
---|
2 | from bench.node import bench |
---|
3 | |
---|
4 | def get_onset_mode(nvalue): |
---|
5 | """ utility function to convert a string to aubio_onsetdetection_type """ |
---|
6 | if nvalue == 'complexdomain' or nvalue == 'complex' : |
---|
7 | return aubio_onset_complex |
---|
8 | elif nvalue == 'hfc' : |
---|
9 | return aubio_onset_hfc |
---|
10 | elif nvalue == 'phase' : |
---|
11 | return aubio_onset_phase |
---|
12 | elif nvalue == 'specdiff' : |
---|
13 | return aubio_onset_specdiff |
---|
14 | elif nvalue == 'energy' : |
---|
15 | return aubio_onset_energy |
---|
16 | elif nvalue == 'kl' : |
---|
17 | return aubio_onset_kl |
---|
18 | elif nvalue == 'mkl' : |
---|
19 | return aubio_onset_mkl |
---|
20 | elif nvalue == 'dual' : |
---|
21 | return 'dual' |
---|
22 | else: |
---|
23 | import sys |
---|
24 | print "unknown onset detection function selected" |
---|
25 | sys.exit(1) |
---|
26 | |
---|
27 | def get_pitch_mode(nvalue): |
---|
28 | """ utility function to convert a string to aubio_pitchdetection_type """ |
---|
29 | if nvalue == 'mcomb' : |
---|
30 | return aubio_pitch_mcomb |
---|
31 | elif nvalue == 'yin' : |
---|
32 | return aubio_pitch_yin |
---|
33 | elif nvalue == 'fcomb' : |
---|
34 | return aubio_pitch_fcomb |
---|
35 | elif nvalue == 'schmitt': |
---|
36 | return aubio_pitch_schmitt |
---|
37 | else: |
---|
38 | import sys |
---|
39 | print "error: unknown pitch detection function selected" |
---|
40 | sys.exit(1) |
---|
41 | |
---|
42 | def check_onset_mode(option, opt, value, parser): |
---|
43 | """ wrapper function to convert a list of modes to |
---|
44 | aubio_onsetdetection_type """ |
---|
45 | nvalues = parser.rargs[0].split(',') |
---|
46 | val = [] |
---|
47 | for nvalue in nvalues: |
---|
48 | val.append(get_onset_mode(nvalue)) |
---|
49 | setattr(parser.values, option.dest, val) |
---|
50 | |
---|
51 | def check_pitch_mode(option, opt, value, parser): |
---|
52 | """ utility function to convert a string to aubio_pitchdetection_type""" |
---|
53 | nvalues = parser.rargs[0].split(',') |
---|
54 | val = [] |
---|
55 | for nvalue in nvalues: |
---|
56 | val.append(get_pitch_mode(nvalue)) |
---|
57 | setattr(parser.values, option.dest, val) |
---|
58 | |
---|
59 | def check_pitchm_mode(option, opt, value, parser): |
---|
60 | """ utility function to convert a string to aubio_pitchdetection_mode """ |
---|
61 | nvalue = parser.rargs[0] |
---|
62 | if nvalue == 'freq' : |
---|
63 | setattr(parser.values, option.dest, aubio_pitchm_freq) |
---|
64 | elif nvalue == 'midi' : |
---|
65 | setattr(parser.values, option.dest, aubio_pitchm_midi) |
---|
66 | elif nvalue == 'cent' : |
---|
67 | setattr(parser.values, option.dest, aubio_pitchm_cent) |
---|
68 | elif nvalue == 'bin' : |
---|
69 | setattr(parser.values, option.dest, aubio_pitchm_bin) |
---|
70 | else: |
---|
71 | import sys |
---|
72 | print "error: unknown pitch detection output selected" |
---|
73 | sys.exit(1) |
---|
74 | |
---|
75 | |
---|
76 | def getonsets(filein,threshold=0.2,silence=-70.,bufsize=1024,hopsize=512, |
---|
77 | mode='dual',localmin=False,storefunc=False,derivate=False): |
---|
78 | frameread = 0 |
---|
79 | filei = sndfile(filein) |
---|
80 | channels = filei.channels() |
---|
81 | myvec = fvec(hopsize,channels) |
---|
82 | readsize = filei.read(hopsize,myvec) |
---|
83 | opick = onsetpick(bufsize,hopsize,channels,myvec,threshold, |
---|
84 | mode=mode,derivate=derivate) |
---|
85 | mylist = list() |
---|
86 | if localmin: |
---|
87 | ovalist = [0., 0., 0., 0., 0.] |
---|
88 | ofunclist = [] |
---|
89 | while(readsize): |
---|
90 | readsize = filei.read(hopsize,myvec) |
---|
91 | isonset,val = opick.do(myvec) |
---|
92 | if (aubio_silence_detection(myvec(),silence)): |
---|
93 | isonset=0 |
---|
94 | if localmin: |
---|
95 | if val > 0: ovalist.append(val) |
---|
96 | else: ovalist.append(0) |
---|
97 | ovalist.pop(0) |
---|
98 | if storefunc: |
---|
99 | ofunclist.append(val) |
---|
100 | if (isonset == 1): |
---|
101 | if localmin: |
---|
102 | i=len(ovalist)-1 |
---|
103 | # find local minima before peak |
---|
104 | while ovalist[i-1] < ovalist[i] and i > 0: |
---|
105 | i -= 1 |
---|
106 | now = (frameread+1-i) |
---|
107 | else: |
---|
108 | now = frameread |
---|
109 | if now > 0 : |
---|
110 | mylist.append(now) |
---|
111 | else: |
---|
112 | now = 0 |
---|
113 | mylist.append(now) |
---|
114 | frameread += 1 |
---|
115 | return mylist, ofunclist |
---|
116 | |
---|
117 | def cutfile(filein,slicetimes,zerothres=0.008,bufsize=1024,hopsize=512): |
---|
118 | frameread = 0 |
---|
119 | readsize = hopsize |
---|
120 | filei = sndfile(filein) |
---|
121 | framestep = hopsize/(filei.samplerate()+0.) |
---|
122 | channels = filei.channels() |
---|
123 | newname = "%s%s%09.5f%s%s" % (filein.split(".")[0].split("/")[-1],".", |
---|
124 | frameread*framestep,".",filein.split(".")[-1]) |
---|
125 | fileo = sndfile(newname,model=filei) |
---|
126 | myvec = fvec(hopsize,channels) |
---|
127 | mycopy = fvec(hopsize,channels) |
---|
128 | while(readsize==hopsize): |
---|
129 | readsize = filei.read(hopsize,myvec) |
---|
130 | # write to current file |
---|
131 | if len(slicetimes) and frameread >= slicetimes[0]: |
---|
132 | slicetimes.pop(0) |
---|
133 | # write up to 1st zero crossing |
---|
134 | zerocross = 0 |
---|
135 | while ( abs( myvec.get(zerocross,0) ) > zerothres ): |
---|
136 | zerocross += 1 |
---|
137 | writesize = fileo.write(zerocross,myvec) |
---|
138 | fromcross = 0 |
---|
139 | while (zerocross < readsize): |
---|
140 | for i in range(channels): |
---|
141 | mycopy.set(myvec.get(zerocross,i),fromcross,i) |
---|
142 | fromcross += 1 |
---|
143 | zerocross += 1 |
---|
144 | del fileo |
---|
145 | fileo = sndfile("%s%s%09.5f%s%s" % |
---|
146 | (filein.split(".")[0].split("/")[-1],".", |
---|
147 | frameread*framestep,".",filein.split(".")[-1]),model=filei) |
---|
148 | writesize = fileo.write(fromcross,mycopy) |
---|
149 | else: |
---|
150 | writesize = fileo.write(readsize,myvec) |
---|
151 | frameread += 1 |
---|
152 | del fileo |
---|
153 | |
---|
154 | |
---|
155 | def getsilences(filein,hopsize=512,silence=-70): |
---|
156 | frameread = 0 |
---|
157 | filei = sndfile(filein) |
---|
158 | srate = filei.samplerate() |
---|
159 | channels = filei.channels() |
---|
160 | myvec = fvec(hopsize,channels) |
---|
161 | readsize = filei.read(hopsize,myvec) |
---|
162 | mylist = [] |
---|
163 | wassilence = 0 |
---|
164 | while(readsize==hopsize): |
---|
165 | readsize = filei.read(hopsize,myvec) |
---|
166 | if (aubio_silence_detection(myvec(),silence)==1): |
---|
167 | if wassilence == 0: |
---|
168 | mylist.append(frameread) |
---|
169 | wassilence == 1 |
---|
170 | else: wassilence = 0 |
---|
171 | frameread += 1 |
---|
172 | return mylist |
---|
173 | |
---|
174 | |
---|
175 | def getpitch(filein,mode=aubio_pitch_mcomb,bufsize=1024,hopsize=512,omode=aubio_pitchm_freq, |
---|
176 | samplerate=44100.,silence=-70): |
---|
177 | frameread = 0 |
---|
178 | filei = sndfile(filein) |
---|
179 | srate = filei.samplerate() |
---|
180 | channels = filei.channels() |
---|
181 | myvec = fvec(hopsize,channels) |
---|
182 | readsize = filei.read(hopsize,myvec) |
---|
183 | pitchdet = pitchdetection(mode=mode,bufsize=bufsize,hopsize=hopsize, |
---|
184 | channels=channels,samplerate=srate,omode=omode) |
---|
185 | mylist = [] |
---|
186 | while(readsize==hopsize): |
---|
187 | readsize = filei.read(hopsize,myvec) |
---|
188 | freq = pitchdet(myvec) |
---|
189 | #print "%.3f %.2f" % (now,freq) |
---|
190 | if (aubio_silence_detection(myvec(),silence)!=1): |
---|
191 | mylist.append(freq) |
---|
192 | else: |
---|
193 | mylist.append(-1.) |
---|
194 | frameread += 1 |
---|
195 | return mylist |
---|
196 | |
---|
197 | |
---|
198 | class taskparams(object): |
---|
199 | """ default parameters for task classes """ |
---|
200 | def __init__(self,input=None,output=None): |
---|
201 | self.silence = -70 |
---|
202 | self.derivate = False |
---|
203 | self.localmin = False |
---|
204 | self.storefunc = False |
---|
205 | self.bufsize = 512 |
---|
206 | self.hopsize = 256 |
---|
207 | self.samplerate = 44100 |
---|
208 | self.tol = 0.05 |
---|
209 | self.step = float(self.hopsize)/float(self.samplerate) |
---|
210 | self.threshold = 0.1 |
---|
211 | self.onsetmode = 'dual' |
---|
212 | self.pitchmode = 'yin' |
---|
213 | self.omode = aubio_pitchm_freq |
---|
214 | |
---|
215 | class task(taskparams): |
---|
216 | """ default template class to apply tasks on a stream """ |
---|
217 | def __init__(self,input,output=None,params=None): |
---|
218 | """ open the input file and initialize default argument |
---|
219 | parameters should be set *before* calling this method. |
---|
220 | """ |
---|
221 | if params == None: self.params = taskparams() |
---|
222 | else: self.params = params |
---|
223 | self.frameread = 0 |
---|
224 | self.readsize = self.params.hopsize |
---|
225 | self.input = input |
---|
226 | self.filei = sndfile(self.input) |
---|
227 | self.srate = self.filei.samplerate() |
---|
228 | self.channels = self.filei.channels() |
---|
229 | self.step = float(self.srate)/float(self.params.hopsize) |
---|
230 | self.myvec = fvec(self.params.hopsize,self.channels) |
---|
231 | self.output = output |
---|
232 | def __call__(self): |
---|
233 | self.readsize = self.filei.read(self.params.hopsize,self.myvec) |
---|
234 | self.frameread += 1 |
---|
235 | |
---|
236 | def compute_all(self): |
---|
237 | """ Compute data """ |
---|
238 | mylist = [] |
---|
239 | while(self.readsize==self.params.hopsize): |
---|
240 | tmp = self() |
---|
241 | if tmp: mylist.append(tmp) |
---|
242 | return mylist |
---|
243 | |
---|
244 | def eval(self,results): |
---|
245 | """ Eval data """ |
---|
246 | pass |
---|
247 | |
---|
248 | def plot(self): |
---|
249 | """ Plot data """ |
---|
250 | pass |
---|
251 | |
---|
252 | class tasksilence(task): |
---|
253 | wassilence = 1 |
---|
254 | issilence = 1 |
---|
255 | def __call__(self): |
---|
256 | task.__call__(self) |
---|
257 | if (aubio_silence_detection(self.myvec(),self.params.silence)==1): |
---|
258 | if self.wassilence == 1: self.issilence = 1 |
---|
259 | else: self.issilence = 2 |
---|
260 | self.wassilence = 1 |
---|
261 | else: |
---|
262 | if self.wassilence <= 0: self.issilence = 0 |
---|
263 | else: self.issilence = -1 |
---|
264 | self.wassilence = 0 |
---|
265 | if self.issilence == -1: |
---|
266 | return -1, self.frameread |
---|
267 | elif self.issilence == 2: |
---|
268 | return 2, self.frameread |
---|
269 | |
---|
270 | class taskpitch(task): |
---|
271 | def __init__(self,input,params=None): |
---|
272 | task.__init__(self,input,params=params) |
---|
273 | self.pitchdet = pitchdetection(mode=get_pitch_mode(self.params.pitchmode), |
---|
274 | bufsize=self.params.bufsize, |
---|
275 | hopsize=self.params.hopsize, |
---|
276 | channels=self.channels, |
---|
277 | samplerate=self.srate, |
---|
278 | omode=self.params.omode) |
---|
279 | |
---|
280 | def __call__(self): |
---|
281 | #print "%.3f %.2f" % (now,freq) |
---|
282 | task.__call__(self) |
---|
283 | freq = self.pitchdet(self.myvec) |
---|
284 | if (aubio_silence_detection(self.myvec(),self.params.silence)!=1): |
---|
285 | return freq |
---|
286 | else: |
---|
287 | return -1. |
---|
288 | |
---|
289 | def gettruth(self): |
---|
290 | """ big hack to extract midi note from /path/to/file.<midinote>.wav """ |
---|
291 | floatpit = self.input.split('.')[-2] |
---|
292 | try: |
---|
293 | return float(floatpit) |
---|
294 | except ValueError: |
---|
295 | print "ERR: no truth file found" |
---|
296 | return 0 |
---|
297 | |
---|
298 | def eval(self,results): |
---|
299 | from median import short_find |
---|
300 | self.truth = self.gettruth() |
---|
301 | num = 0 |
---|
302 | sum = 0 |
---|
303 | res = [] |
---|
304 | for i in results: |
---|
305 | if i == -1: pass |
---|
306 | else: |
---|
307 | res.append(i) |
---|
308 | sum += i |
---|
309 | num += 1 |
---|
310 | if num == 0: |
---|
311 | avg = 0; med = 0 |
---|
312 | else: |
---|
313 | avg = aubio_freqtomidi(sum / float(num)) |
---|
314 | med = aubio_freqtomidi(short_find(res,len(res)/2)) |
---|
315 | avgdist = self.truth - avg |
---|
316 | meddist = self.truth - med |
---|
317 | return avgdist, meddist |
---|
318 | |
---|
319 | def plot(self): |
---|
320 | from aubio.gnuplot import plot_pitch |
---|
321 | plot_pitch(self.input, |
---|
322 | pitch, |
---|
323 | samplerate=samplerate, |
---|
324 | hopsize=self.params.hopsize, |
---|
325 | outplot=options.outplot) |
---|
326 | |
---|
327 | |
---|
328 | class taskonset(task): |
---|
329 | def __init__(self,input,output=None,params=None): |
---|
330 | """ open the input file and initialize arguments |
---|
331 | parameters should be set *before* calling this method. |
---|
332 | """ |
---|
333 | task.__init__(self,input,params=params) |
---|
334 | self.opick = onsetpick(self.params.bufsize, |
---|
335 | self.params.hopsize, |
---|
336 | self.channels, |
---|
337 | self.myvec, |
---|
338 | self.params.threshold, |
---|
339 | mode=get_onset_mode(self.params.onsetmode), |
---|
340 | derivate=self.params.derivate) |
---|
341 | self.olist = [] |
---|
342 | self.ofunc = [] |
---|
343 | self.d,self.d2 = [],[] |
---|
344 | self.maxofunc = 0 |
---|
345 | if self.params.localmin: |
---|
346 | self.ovalist = [0., 0., 0., 0., 0.] |
---|
347 | |
---|
348 | def __call__(self): |
---|
349 | task.__call__(self) |
---|
350 | isonset,val = self.opick.do(self.myvec) |
---|
351 | if (aubio_silence_detection(self.myvec(),self.params.silence)): |
---|
352 | isonset=0 |
---|
353 | if self.params.storefunc: |
---|
354 | self.ofunc.append(val) |
---|
355 | if self.params.localmin: |
---|
356 | if val > 0: self.ovalist.append(val) |
---|
357 | else: self.ovalist.append(0) |
---|
358 | self.ovalist.pop(0) |
---|
359 | if (isonset == 1): |
---|
360 | if self.params.localmin: |
---|
361 | i=len(self.ovalist)-1 |
---|
362 | # find local minima before peak |
---|
363 | while self.ovalist[i-1] < self.ovalist[i] and i > 0: |
---|
364 | i -= 1 |
---|
365 | now = (self.frameread+1-i) |
---|
366 | else: |
---|
367 | now = self.frameread |
---|
368 | if now < 0 : |
---|
369 | now = 0 |
---|
370 | return now, val |
---|
371 | |
---|
372 | def gettruth(self): |
---|
373 | from os.path import isfile |
---|
374 | ftru = '.'.join(self.input.split('.')[:-1]) |
---|
375 | ftru = '.'.join((ftru,'txt')) |
---|
376 | if isfile(ftru): return ftru |
---|
377 | else: return |
---|
378 | |
---|
379 | def eval(self,lres): |
---|
380 | from txtfile import read_datafile |
---|
381 | from onsetcompare import onset_roc |
---|
382 | amode = 'roc' |
---|
383 | vmode = 'verbose' |
---|
384 | vmode = '' |
---|
385 | ftru = self.gettruth() |
---|
386 | if not ftru: |
---|
387 | print "ERR: no truth file found" |
---|
388 | return |
---|
389 | ltru = read_datafile(ftru,depth=0) |
---|
390 | for i in range(len(lres)): lres[i] = lres[i][0]*self.params.step |
---|
391 | if vmode=='verbose': |
---|
392 | print "Running with mode %s" % self.params.mode, |
---|
393 | print " and threshold %f" % self.params.threshold, |
---|
394 | print " on file", input |
---|
395 | #print ltru; print lres |
---|
396 | if amode == 'localisation': |
---|
397 | l = onset_diffs(ltru,lres,self.params.tol) |
---|
398 | mean = 0 |
---|
399 | for i in l: mean += i |
---|
400 | if len(l): print "%.3f" % (mean/len(l)) |
---|
401 | else: print "?0" |
---|
402 | elif amode == 'roc': |
---|
403 | self.orig, self.missed, self.merged, \ |
---|
404 | self.expc, self.bad, self.doubled = \ |
---|
405 | onset_roc(ltru,lres,self.params.tol) |
---|
406 | |
---|
407 | def plot(self,onsets,ofunc): |
---|
408 | import Gnuplot, Gnuplot.funcutils |
---|
409 | import aubio.txtfile |
---|
410 | import os.path |
---|
411 | import numarray |
---|
412 | from aubio.onsetcompare import onset_roc |
---|
413 | |
---|
414 | self.lenofunc = len(ofunc) |
---|
415 | self.maxofunc = max(max(ofunc), self.maxofunc) |
---|
416 | # onset detection function |
---|
417 | downtime = numarray.arange(len(ofunc))/self.step |
---|
418 | self.d.append(Gnuplot.Data(downtime,ofunc,with='lines')) |
---|
419 | |
---|
420 | # detected onsets |
---|
421 | x1 = numarray.array(onsets)/self.step |
---|
422 | y1 = self.maxofunc*numarray.ones(len(onsets)) |
---|
423 | self.d.append(Gnuplot.Data(x1,y1,with='impulses')) |
---|
424 | self.d2.append(Gnuplot.Data(x1,-y1,with='impulses')) |
---|
425 | |
---|
426 | # check if datafile exists truth |
---|
427 | datafile = self.input.replace('.wav','.txt') |
---|
428 | if datafile == self.input: datafile = "" |
---|
429 | if not os.path.isfile(datafile): |
---|
430 | self.title = "truth file not found" |
---|
431 | t = Gnuplot.Data(0,0,with='impulses') |
---|
432 | else: |
---|
433 | t_onsets = aubio.txtfile.read_datafile(datafile) |
---|
434 | y2 = self.maxofunc*numarray.ones(len(t_onsets)) |
---|
435 | x2 = numarray.array(t_onsets).resize(len(t_onsets)) |
---|
436 | self.d2.append(Gnuplot.Data(x2,y2,with='impulses')) |
---|
437 | |
---|
438 | tol = 0.050 |
---|
439 | |
---|
440 | orig, missed, merged, expc, bad, doubled = \ |
---|
441 | onset_roc(x2,x1,tol) |
---|
442 | self.title = "GD %2.3f%% FP %2.3f%%" % \ |
---|
443 | ((100*float(orig-missed-merged)/(orig)), |
---|
444 | (100*float(bad+doubled)/(orig))) |
---|
445 | |
---|
446 | |
---|
447 | def plotplot(self,outplot=None): |
---|
448 | from aubio.gnuplot import gnuplot_init, audio_to_array, make_audio_plot |
---|
449 | import re |
---|
450 | # audio data |
---|
451 | time,data = audio_to_array(self.input) |
---|
452 | self.d2.append(make_audio_plot(time,data)) |
---|
453 | # prepare the plot |
---|
454 | g = gnuplot_init(outplot) |
---|
455 | |
---|
456 | g('set title \'%s %s\'' % (re.sub('.*/','',self.input),self.title)) |
---|
457 | |
---|
458 | g('set multiplot') |
---|
459 | |
---|
460 | # hack to align left axis |
---|
461 | g('set lmargin 15') |
---|
462 | |
---|
463 | # plot waveform and onsets |
---|
464 | g('set size 1,0.3') |
---|
465 | g('set origin 0,0.7') |
---|
466 | g('set xrange [0:%f]' % max(time)) |
---|
467 | g('set yrange [-1:1]') |
---|
468 | g.ylabel('amplitude') |
---|
469 | g.plot(*self.d2) |
---|
470 | |
---|
471 | g('unset title') |
---|
472 | |
---|
473 | # plot onset detection function |
---|
474 | g('set size 1,0.7') |
---|
475 | g('set origin 0,0') |
---|
476 | g('set xrange [0:%f]' % (self.lenofunc/self.step)) |
---|
477 | g('set yrange [0:%f]' % (self.maxofunc*1.01)) |
---|
478 | g.xlabel('time') |
---|
479 | g.ylabel('onset detection value') |
---|
480 | g.plot(*self.d) |
---|
481 | |
---|
482 | g('unset multiplot') |
---|
483 | |
---|
484 | class taskcut(task): |
---|
485 | def __init__(self,input,slicetimes,params=None,output=None): |
---|
486 | """ open the input file and initialize arguments |
---|
487 | parameters should be set *before* calling this method. |
---|
488 | """ |
---|
489 | task.__init__(self,input,output=None,params=params) |
---|
490 | self.newname = "%s%s%09.5f%s%s" % (self.input.split(".")[0].split("/")[-1],".", |
---|
491 | self.frameread/self.step,".",self.input.split(".")[-1]) |
---|
492 | self.fileo = sndfile(self.newname,model=self.filei) |
---|
493 | self.myvec = fvec(self.params.hopsize,self.channels) |
---|
494 | self.mycopy = fvec(self.params.hopsize,self.channels) |
---|
495 | self.slicetimes = slicetimes |
---|
496 | |
---|
497 | def __call__(self): |
---|
498 | task.__call__(self) |
---|
499 | # write to current file |
---|
500 | if len(self.slicetimes) and self.frameread >= self.slicetimes[0]: |
---|
501 | self.slicetimes.pop(0) |
---|
502 | # write up to 1st zero crossing |
---|
503 | zerocross = 0 |
---|
504 | while ( abs( self.myvec.get(zerocross,0) ) > self.params.zerothres ): |
---|
505 | zerocross += 1 |
---|
506 | writesize = self.fileo.write(zerocross,self.myvec) |
---|
507 | fromcross = 0 |
---|
508 | while (zerocross < self.readsize): |
---|
509 | for i in range(self.channels): |
---|
510 | self.mycopy.set(self.myvec.get(zerocross,i),fromcross,i) |
---|
511 | fromcross += 1 |
---|
512 | zerocross += 1 |
---|
513 | del self.fileo |
---|
514 | self.fileo = sndfile("%s%s%09.5f%s%s" % |
---|
515 | (self.input.split(".")[0].split("/")[-1],".", |
---|
516 | self.frameread/self.step,".",self.input.split(".")[-1]),model=self.filei) |
---|
517 | writesize = self.fileo.write(fromcross,self.mycopy) |
---|
518 | else: |
---|
519 | writesize = self.fileo.write(self.readsize,self.myvec) |
---|
520 | |
---|
521 | class taskbeat(taskonset): |
---|
522 | def __init__(self,input,params=None,output=None): |
---|
523 | """ open the input file and initialize arguments |
---|
524 | parameters should be set *before* calling this method. |
---|
525 | """ |
---|
526 | taskonset.__init__(self,input,output=None,params=params) |
---|
527 | self.btwinlen = 512**2/self.params.hopsize |
---|
528 | self.btstep = self.btwinlen/4 |
---|
529 | self.btoutput = fvec(self.btstep,self.channels) |
---|
530 | self.dfframe = fvec(self.btwinlen,self.channels) |
---|
531 | self.bt = beattracking(self.btwinlen,self.channels) |
---|
532 | self.pos2 = 0 |
---|
533 | |
---|
534 | def __call__(self): |
---|
535 | taskonset.__call__(self) |
---|
536 | # write to current file |
---|
537 | if self.pos2 == self.btstep - 1 : |
---|
538 | self.bt.do(self.dfframe,self.btoutput) |
---|
539 | for i in range (self.btwinlen - self.btstep): |
---|
540 | self.dfframe.set(self.dfframe.get(i+self.btstep,0),i,0) |
---|
541 | for i in range(self.btwinlen - self.btstep, self.btwinlen): |
---|
542 | self.dfframe.set(0,i,0) |
---|
543 | self.pos2 = -1; |
---|
544 | self.pos2 += 1 |
---|
545 | val = self.opick.pp.getval() |
---|
546 | self.dfframe.set(val,self.btwinlen - self.btstep + self.pos2,0) |
---|
547 | i=0 |
---|
548 | for i in range(1,int( self.btoutput.get(0,0) ) ): |
---|
549 | if self.pos2 == self.btoutput.get(i,0) and \ |
---|
550 | aubio_silence_detection(self.myvec(), |
---|
551 | self.params.silence)!=1: |
---|
552 | return self.frameread, 0 |
---|
553 | |
---|
554 | def eval(self,results): |
---|
555 | pass |
---|